forked from opencv/opencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblenders.cpp
903 lines (768 loc) · 30.8 KB
/
blenders.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_stitching.hpp"
#ifdef HAVE_CUDA
namespace cv { namespace cuda { namespace device
{
namespace blend
{
void addSrcWeightGpu16S(const PtrStep<short> src, const PtrStep<short> src_weight,
PtrStep<short> dst, PtrStep<short> dst_weight, cv::Rect &rc);
void addSrcWeightGpu32F(const PtrStep<short> src, const PtrStepf src_weight,
PtrStep<short> dst, PtrStepf dst_weight, cv::Rect &rc);
void normalizeUsingWeightMapGpu16S(const PtrStep<short> weight, PtrStep<short> src,
const int width, const int height);
void normalizeUsingWeightMapGpu32F(const PtrStepf weight, PtrStep<short> src,
const int width, const int height);
}
}}}
#endif
namespace cv {
namespace detail {
static const float WEIGHT_EPS = 1e-5f;
Ptr<Blender> Blender::createDefault(int type, bool try_gpu)
{
if (type == NO)
return makePtr<Blender>();
if (type == FEATHER)
return makePtr<FeatherBlender>(try_gpu);
if (type == MULTI_BAND)
return makePtr<MultiBandBlender>(try_gpu);
CV_Error(Error::StsBadArg, "unsupported blending method");
}
void Blender::prepare(const std::vector<Point> &corners, const std::vector<Size> &sizes)
{
prepare(resultRoi(corners, sizes));
}
void Blender::prepare(Rect dst_roi)
{
dst_.create(dst_roi.size(), CV_16SC3);
dst_.setTo(Scalar::all(0));
dst_mask_.create(dst_roi.size(), CV_8U);
dst_mask_.setTo(Scalar::all(0));
dst_roi_ = dst_roi;
}
void Blender::feed(InputArray _img, InputArray _mask, Point tl)
{
Mat img = _img.getMat();
Mat mask = _mask.getMat();
Mat dst = dst_.getMat(ACCESS_RW);
Mat dst_mask = dst_mask_.getMat(ACCESS_RW);
CV_Assert(img.type() == CV_16SC3);
CV_Assert(mask.type() == CV_8U);
int dx = tl.x - dst_roi_.x;
int dy = tl.y - dst_roi_.y;
for (int y = 0; y < img.rows; ++y)
{
const Point3_<short> *src_row = img.ptr<Point3_<short> >(y);
Point3_<short> *dst_row = dst.ptr<Point3_<short> >(dy + y);
const uchar *mask_row = mask.ptr<uchar>(y);
uchar *dst_mask_row = dst_mask.ptr<uchar>(dy + y);
for (int x = 0; x < img.cols; ++x)
{
if (mask_row[x])
dst_row[dx + x] = src_row[x];
dst_mask_row[dx + x] |= mask_row[x];
}
}
}
void Blender::blend(InputOutputArray dst, InputOutputArray dst_mask)
{
UMat mask;
compare(dst_mask_, 0, mask, CMP_EQ);
dst_.setTo(Scalar::all(0), mask);
dst.assign(dst_);
dst_mask.assign(dst_mask_);
dst_.release();
dst_mask_.release();
}
void FeatherBlender::prepare(Rect dst_roi)
{
Blender::prepare(dst_roi);
dst_weight_map_.create(dst_roi.size(), CV_32F);
dst_weight_map_.setTo(0);
}
void FeatherBlender::feed(InputArray _img, InputArray mask, Point tl)
{
Mat img = _img.getMat();
Mat dst = dst_.getMat(ACCESS_RW);
CV_Assert(img.type() == CV_16SC3);
CV_Assert(mask.type() == CV_8U);
createWeightMap(mask, sharpness_, weight_map_);
Mat weight_map = weight_map_.getMat(ACCESS_READ);
Mat dst_weight_map = dst_weight_map_.getMat(ACCESS_RW);
int dx = tl.x - dst_roi_.x;
int dy = tl.y - dst_roi_.y;
for (int y = 0; y < img.rows; ++y)
{
const Point3_<short>* src_row = img.ptr<Point3_<short> >(y);
Point3_<short>* dst_row = dst.ptr<Point3_<short> >(dy + y);
const float* weight_row = weight_map.ptr<float>(y);
float* dst_weight_row = dst_weight_map.ptr<float>(dy + y);
for (int x = 0; x < img.cols; ++x)
{
dst_row[dx + x].x += static_cast<short>(src_row[x].x * weight_row[x]);
dst_row[dx + x].y += static_cast<short>(src_row[x].y * weight_row[x]);
dst_row[dx + x].z += static_cast<short>(src_row[x].z * weight_row[x]);
dst_weight_row[dx + x] += weight_row[x];
}
}
}
void FeatherBlender::blend(InputOutputArray dst, InputOutputArray dst_mask)
{
normalizeUsingWeightMap(dst_weight_map_, dst_);
compare(dst_weight_map_, WEIGHT_EPS, dst_mask_, CMP_GT);
Blender::blend(dst, dst_mask);
}
Rect FeatherBlender::createWeightMaps(const std::vector<UMat> &masks, const std::vector<Point> &corners,
std::vector<UMat> &weight_maps)
{
weight_maps.resize(masks.size());
for (size_t i = 0; i < masks.size(); ++i)
createWeightMap(masks[i], sharpness_, weight_maps[i]);
Rect dst_roi = resultRoi(corners, masks);
Mat weights_sum(dst_roi.size(), CV_32F);
weights_sum.setTo(0);
for (size_t i = 0; i < weight_maps.size(); ++i)
{
Rect roi(corners[i].x - dst_roi.x, corners[i].y - dst_roi.y,
weight_maps[i].cols, weight_maps[i].rows);
add(weights_sum(roi), weight_maps[i], weights_sum(roi));
}
for (size_t i = 0; i < weight_maps.size(); ++i)
{
Rect roi(corners[i].x - dst_roi.x, corners[i].y - dst_roi.y,
weight_maps[i].cols, weight_maps[i].rows);
Mat tmp = weights_sum(roi);
tmp.setTo(1, tmp < std::numeric_limits<float>::epsilon());
divide(weight_maps[i], tmp, weight_maps[i]);
}
return dst_roi;
}
MultiBandBlender::MultiBandBlender(int try_gpu, int num_bands, int weight_type)
{
num_bands_ = 0;
setNumBands(num_bands);
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
can_use_gpu_ = try_gpu && cuda::getCudaEnabledDeviceCount();
gpu_feed_idx_ = 0;
#else
CV_UNUSED(try_gpu);
can_use_gpu_ = false;
#endif
CV_Assert(weight_type == CV_32F || weight_type == CV_16S);
weight_type_ = weight_type;
}
void MultiBandBlender::prepare(Rect dst_roi)
{
dst_roi_final_ = dst_roi;
// Crop unnecessary bands
double max_len = static_cast<double>(std::max(dst_roi.width, dst_roi.height));
num_bands_ = std::min(actual_num_bands_, static_cast<int>(ceil(std::log(max_len) / std::log(2.0))));
// Add border to the final image, to ensure sizes are divided by (1 << num_bands_)
dst_roi.width += ((1 << num_bands_) - dst_roi.width % (1 << num_bands_)) % (1 << num_bands_);
dst_roi.height += ((1 << num_bands_) - dst_roi.height % (1 << num_bands_)) % (1 << num_bands_);
Blender::prepare(dst_roi);
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
if (can_use_gpu_)
{
gpu_initialized_ = false;
gpu_feed_idx_ = 0;
gpu_tl_points_.clear();
gpu_weight_pyr_gauss_vec_.clear();
gpu_src_pyr_laplace_vec_.clear();
gpu_ups_.clear();
gpu_imgs_with_border_.clear();
gpu_dst_pyr_laplace_.resize(num_bands_ + 1);
gpu_dst_pyr_laplace_[0].create(dst_roi.size(), CV_16SC3);
gpu_dst_pyr_laplace_[0].setTo(Scalar::all(0));
gpu_dst_band_weights_.resize(num_bands_ + 1);
gpu_dst_band_weights_[0].create(dst_roi.size(), weight_type_);
gpu_dst_band_weights_[0].setTo(0);
for (int i = 1; i <= num_bands_; ++i)
{
gpu_dst_pyr_laplace_[i].create((gpu_dst_pyr_laplace_[i - 1].rows + 1) / 2,
(gpu_dst_pyr_laplace_[i - 1].cols + 1) / 2, CV_16SC3);
gpu_dst_band_weights_[i].create((gpu_dst_band_weights_[i - 1].rows + 1) / 2,
(gpu_dst_band_weights_[i - 1].cols + 1) / 2, weight_type_);
gpu_dst_pyr_laplace_[i].setTo(Scalar::all(0));
gpu_dst_band_weights_[i].setTo(0);
}
}
else
#endif
{
dst_pyr_laplace_.resize(num_bands_ + 1);
dst_pyr_laplace_[0] = dst_;
dst_band_weights_.resize(num_bands_ + 1);
dst_band_weights_[0].create(dst_roi.size(), weight_type_);
dst_band_weights_[0].setTo(0);
for (int i = 1; i <= num_bands_; ++i)
{
dst_pyr_laplace_[i].create((dst_pyr_laplace_[i - 1].rows + 1) / 2,
(dst_pyr_laplace_[i - 1].cols + 1) / 2, CV_16SC3);
dst_band_weights_[i].create((dst_band_weights_[i - 1].rows + 1) / 2,
(dst_band_weights_[i - 1].cols + 1) / 2, weight_type_);
dst_pyr_laplace_[i].setTo(Scalar::all(0));
dst_band_weights_[i].setTo(0);
}
}
}
#ifdef HAVE_OPENCL
static bool ocl_MultiBandBlender_feed(InputArray _src, InputArray _weight,
InputOutputArray _dst, InputOutputArray _dst_weight)
{
String buildOptions = "-D DEFINE_feed";
ocl::buildOptionsAddMatrixDescription(buildOptions, "src", _src);
ocl::buildOptionsAddMatrixDescription(buildOptions, "weight", _weight);
ocl::buildOptionsAddMatrixDescription(buildOptions, "dst", _dst);
ocl::buildOptionsAddMatrixDescription(buildOptions, "dstWeight", _dst_weight);
ocl::Kernel k("feed", ocl::stitching::multibandblend_oclsrc, buildOptions);
if (k.empty())
return false;
UMat src = _src.getUMat();
k.args(ocl::KernelArg::ReadOnly(src),
ocl::KernelArg::ReadOnly(_weight.getUMat()),
ocl::KernelArg::ReadWrite(_dst.getUMat()),
ocl::KernelArg::ReadWrite(_dst_weight.getUMat())
);
size_t globalsize[2] = {(size_t)src.cols, (size_t)src.rows };
return k.run(2, globalsize, NULL, false);
}
#endif
void MultiBandBlender::feed(InputArray _img, InputArray mask, Point tl)
{
#if ENABLE_LOG
int64 t = getTickCount();
#endif
UMat img;
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
// If using gpu save the top left coordinate when running first time after prepare
if (can_use_gpu_)
{
if (!gpu_initialized_)
{
gpu_tl_points_.push_back(tl);
}
else
{
tl = gpu_tl_points_[gpu_feed_idx_];
}
}
// If _img is not a GpuMat get it as UMat from the InputArray object.
// If it is GpuMat make a dummy object with right dimensions but no data and
// get _img as a GpuMat
if (!_img.isGpuMat())
#endif
{
img = _img.getUMat();
}
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
else
{
gpu_img_ = _img.getGpuMat();
img = UMat(gpu_img_.rows, gpu_img_.cols, gpu_img_.type());
}
#endif
CV_Assert(img.type() == CV_16SC3 || img.type() == CV_8UC3);
CV_Assert(mask.type() == CV_8U);
// Keep source image in memory with small border
int gap = 3 * (1 << num_bands_);
Point tl_new(std::max(dst_roi_.x, tl.x - gap),
std::max(dst_roi_.y, tl.y - gap));
Point br_new(std::min(dst_roi_.br().x, tl.x + img.cols + gap),
std::min(dst_roi_.br().y, tl.y + img.rows + gap));
// Ensure coordinates of top-left, bottom-right corners are divided by (1 << num_bands_).
// After that scale between layers is exactly 2.
//
// We do it to avoid interpolation problems when keeping sub-images only. There is no such problem when
// image is bordered to have size equal to the final image size, but this is too memory hungry approach.
tl_new.x = dst_roi_.x + (((tl_new.x - dst_roi_.x) >> num_bands_) << num_bands_);
tl_new.y = dst_roi_.y + (((tl_new.y - dst_roi_.y) >> num_bands_) << num_bands_);
int width = br_new.x - tl_new.x;
int height = br_new.y - tl_new.y;
width += ((1 << num_bands_) - width % (1 << num_bands_)) % (1 << num_bands_);
height += ((1 << num_bands_) - height % (1 << num_bands_)) % (1 << num_bands_);
br_new.x = tl_new.x + width;
br_new.y = tl_new.y + height;
int dy = std::max(br_new.y - dst_roi_.br().y, 0);
int dx = std::max(br_new.x - dst_roi_.br().x, 0);
tl_new.x -= dx; br_new.x -= dx;
tl_new.y -= dy; br_new.y -= dy;
int top = tl.y - tl_new.y;
int left = tl.x - tl_new.x;
int bottom = br_new.y - tl.y - img.rows;
int right = br_new.x - tl.x - img.cols;
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
if (can_use_gpu_)
{
if (!gpu_initialized_)
{
gpu_imgs_with_border_.push_back(cuda::GpuMat());
gpu_weight_pyr_gauss_vec_.push_back(std::vector<cuda::GpuMat>(num_bands_+1));
gpu_src_pyr_laplace_vec_.push_back(std::vector<cuda::GpuMat>(num_bands_+1));
gpu_ups_.push_back(std::vector<cuda::GpuMat>(num_bands_));
}
// If _img is not GpuMat upload it to gpu else gpu_img_ was set already
if (!_img.isGpuMat())
{
gpu_img_.upload(img);
}
// Create the source image Laplacian pyramid
cuda::copyMakeBorder(gpu_img_, gpu_imgs_with_border_[gpu_feed_idx_], top, bottom,
left, right, BORDER_REFLECT);
gpu_imgs_with_border_[gpu_feed_idx_].convertTo(gpu_src_pyr_laplace_vec_[gpu_feed_idx_][0], CV_16S);
for (int i = 0; i < num_bands_; ++i)
cuda::pyrDown(gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i],
gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i + 1]);
for (int i = 0; i < num_bands_; ++i)
{
cuda::pyrUp(gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i + 1], gpu_ups_[gpu_feed_idx_][i]);
cuda::subtract(gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i],
gpu_ups_[gpu_feed_idx_][i],
gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i]);
}
// Create the weight map Gaussian pyramid only if not yet initialized
if (!gpu_initialized_)
{
if (mask.isGpuMat())
{
gpu_mask_ = mask.getGpuMat();
}
else
{
gpu_mask_.upload(mask);
}
if (weight_type_ == CV_32F)
{
gpu_mask_.convertTo(gpu_weight_map_, CV_32F, 1. / 255.);
}
else // weight_type_ == CV_16S
{
gpu_mask_.convertTo(gpu_weight_map_, CV_16S);
cuda::compare(gpu_mask_, 0, gpu_add_mask_, CMP_NE);
cuda::add(gpu_weight_map_, Scalar::all(1), gpu_weight_map_, gpu_add_mask_);
}
cuda::copyMakeBorder(gpu_weight_map_, gpu_weight_pyr_gauss_vec_[gpu_feed_idx_][0], top,
bottom, left, right, BORDER_CONSTANT);
for (int i = 0; i < num_bands_; ++i)
cuda::pyrDown(gpu_weight_pyr_gauss_vec_[gpu_feed_idx_][i],
gpu_weight_pyr_gauss_vec_[gpu_feed_idx_][i + 1]);
}
int y_tl = tl_new.y - dst_roi_.y;
int y_br = br_new.y - dst_roi_.y;
int x_tl = tl_new.x - dst_roi_.x;
int x_br = br_new.x - dst_roi_.x;
// Add weighted layer of the source image to the final Laplacian pyramid layer
for (int i = 0; i <= num_bands_; ++i)
{
Rect rc(x_tl, y_tl, x_br - x_tl, y_br - y_tl);
cuda::GpuMat &_src_pyr_laplace = gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i];
cuda::GpuMat _dst_pyr_laplace = gpu_dst_pyr_laplace_[i](rc);
cuda::GpuMat &_weight_pyr_gauss = gpu_weight_pyr_gauss_vec_[gpu_feed_idx_][i];
cuda::GpuMat _dst_band_weights = gpu_dst_band_weights_[i](rc);
using namespace cv::cuda::device::blend;
if (weight_type_ == CV_32F)
{
addSrcWeightGpu32F(_src_pyr_laplace, _weight_pyr_gauss, _dst_pyr_laplace, _dst_band_weights, rc);
}
else
{
addSrcWeightGpu16S(_src_pyr_laplace, _weight_pyr_gauss, _dst_pyr_laplace, _dst_band_weights, rc);
}
x_tl /= 2; y_tl /= 2;
x_br /= 2; y_br /= 2;
}
++gpu_feed_idx_;
return;
}
#endif
// Create the source image Laplacian pyramid
UMat img_with_border;
copyMakeBorder(_img, img_with_border, top, bottom, left, right,
BORDER_REFLECT);
LOGLN(" Add border to the source image, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
#if ENABLE_LOG
t = getTickCount();
#endif
std::vector<UMat> src_pyr_laplace;
createLaplacePyr(img_with_border, num_bands_, src_pyr_laplace);
LOGLN(" Create the source image Laplacian pyramid, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
#if ENABLE_LOG
t = getTickCount();
#endif
// Create the weight map Gaussian pyramid
UMat weight_map;
std::vector<UMat> weight_pyr_gauss(num_bands_ + 1);
if (weight_type_ == CV_32F)
{
mask.getUMat().convertTo(weight_map, CV_32F, 1./255.);
}
else // weight_type_ == CV_16S
{
mask.getUMat().convertTo(weight_map, CV_16S);
UMat add_mask;
compare(mask, 0, add_mask, CMP_NE);
add(weight_map, Scalar::all(1), weight_map, add_mask);
}
copyMakeBorder(weight_map, weight_pyr_gauss[0], top, bottom, left, right, BORDER_CONSTANT);
for (int i = 0; i < num_bands_; ++i)
pyrDown(weight_pyr_gauss[i], weight_pyr_gauss[i + 1]);
LOGLN(" Create the weight map Gaussian pyramid, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
#if ENABLE_LOG
t = getTickCount();
#endif
int y_tl = tl_new.y - dst_roi_.y;
int y_br = br_new.y - dst_roi_.y;
int x_tl = tl_new.x - dst_roi_.x;
int x_br = br_new.x - dst_roi_.x;
// Add weighted layer of the source image to the final Laplacian pyramid layer
for (int i = 0; i <= num_bands_; ++i)
{
Rect rc(x_tl, y_tl, x_br - x_tl, y_br - y_tl);
#ifdef HAVE_OPENCL
if ( !cv::ocl::isOpenCLActivated() ||
!ocl_MultiBandBlender_feed(src_pyr_laplace[i], weight_pyr_gauss[i],
dst_pyr_laplace_[i](rc), dst_band_weights_[i](rc)) )
#endif
{
Mat _src_pyr_laplace = src_pyr_laplace[i].getMat(ACCESS_READ);
Mat _dst_pyr_laplace = dst_pyr_laplace_[i](rc).getMat(ACCESS_RW);
Mat _weight_pyr_gauss = weight_pyr_gauss[i].getMat(ACCESS_READ);
Mat _dst_band_weights = dst_band_weights_[i](rc).getMat(ACCESS_RW);
if (weight_type_ == CV_32F)
{
for (int y = 0; y < rc.height; ++y)
{
const Point3_<short>* src_row = _src_pyr_laplace.ptr<Point3_<short> >(y);
Point3_<short>* dst_row = _dst_pyr_laplace.ptr<Point3_<short> >(y);
const float* weight_row = _weight_pyr_gauss.ptr<float>(y);
float* dst_weight_row = _dst_band_weights.ptr<float>(y);
for (int x = 0; x < rc.width; ++x)
{
dst_row[x].x += static_cast<short>(src_row[x].x * weight_row[x]);
dst_row[x].y += static_cast<short>(src_row[x].y * weight_row[x]);
dst_row[x].z += static_cast<short>(src_row[x].z * weight_row[x]);
dst_weight_row[x] += weight_row[x];
}
}
}
else // weight_type_ == CV_16S
{
for (int y = 0; y < y_br - y_tl; ++y)
{
const Point3_<short>* src_row = _src_pyr_laplace.ptr<Point3_<short> >(y);
Point3_<short>* dst_row = _dst_pyr_laplace.ptr<Point3_<short> >(y);
const short* weight_row = _weight_pyr_gauss.ptr<short>(y);
short* dst_weight_row = _dst_band_weights.ptr<short>(y);
for (int x = 0; x < x_br - x_tl; ++x)
{
dst_row[x].x += short((src_row[x].x * weight_row[x]) >> 8);
dst_row[x].y += short((src_row[x].y * weight_row[x]) >> 8);
dst_row[x].z += short((src_row[x].z * weight_row[x]) >> 8);
dst_weight_row[x] += weight_row[x];
}
}
}
}
#ifdef HAVE_OPENCL
else
{
CV_IMPL_ADD(CV_IMPL_OCL);
}
#endif
x_tl /= 2; y_tl /= 2;
x_br /= 2; y_br /= 2;
}
LOGLN(" Add weighted layer of the source image to the final Laplacian pyramid layer, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
}
void MultiBandBlender::blend(InputOutputArray dst, InputOutputArray dst_mask)
{
Rect dst_rc(0, 0, dst_roi_final_.width, dst_roi_final_.height);
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
if (can_use_gpu_)
{
if (!gpu_initialized_)
{
gpu_ups_.push_back(std::vector<cuda::GpuMat>(num_bands_+1));
}
for (int i = 0; i <= num_bands_; ++i)
{
cuda::GpuMat dst_i = gpu_dst_pyr_laplace_[i];
cuda::GpuMat weight_i = gpu_dst_band_weights_[i];
using namespace ::cv::cuda::device::blend;
if (weight_type_ == CV_32F)
{
normalizeUsingWeightMapGpu32F(weight_i, dst_i, weight_i.cols, weight_i.rows);
}
else
{
normalizeUsingWeightMapGpu16S(weight_i, dst_i, weight_i.cols, weight_i.rows);
}
}
// Restore image from Laplacian pyramid
for (size_t i = num_bands_; i > 0; --i)
{
cuda::pyrUp(gpu_dst_pyr_laplace_[i], gpu_ups_[gpu_ups_.size()-1][num_bands_-i]);
cuda::add(gpu_ups_[gpu_ups_.size()-1][num_bands_-i],
gpu_dst_pyr_laplace_[i - 1],
gpu_dst_pyr_laplace_[i - 1]);
}
// If dst is GpuMat do masking on gpu and return dst as a GpuMat
// else download the image to cpu and return it as an ordinary Mat
if (dst.isGpuMat())
{
cuda::GpuMat &gpu_dst = dst.getGpuMatRef();
cuda::compare(gpu_dst_band_weights_[0](dst_rc), WEIGHT_EPS, gpu_dst_mask_, CMP_GT);
cuda::compare(gpu_dst_mask_, 0, gpu_mask_, CMP_EQ);
gpu_dst_pyr_laplace_[0](dst_rc).setTo(Scalar::all(0), gpu_mask_);
gpu_dst_pyr_laplace_[0](dst_rc).convertTo(gpu_dst, CV_16S);
}
else
{
gpu_dst_pyr_laplace_[0](dst_rc).download(dst_);
Mat dst_band_weights_0;
gpu_dst_band_weights_[0].download(dst_band_weights_0);
compare(dst_band_weights_0(dst_rc), WEIGHT_EPS, dst_mask_, CMP_GT);
Blender::blend(dst, dst_mask);
}
// Set destination Mats to 0 so new image can be blended
for (size_t i = 0; i < (size_t)(num_bands_ + 1); ++i)
{
gpu_dst_band_weights_[i].setTo(0);
gpu_dst_pyr_laplace_[i].setTo(Scalar::all(0));
}
gpu_feed_idx_ = 0;
gpu_initialized_ = true;
}
else
#endif
{
cv::UMat dst_band_weights_0;
for (int i = 0; i <= num_bands_; ++i)
normalizeUsingWeightMap(dst_band_weights_[i], dst_pyr_laplace_[i]);
restoreImageFromLaplacePyr(dst_pyr_laplace_);
dst_ = dst_pyr_laplace_[0](dst_rc);
dst_band_weights_0 = dst_band_weights_[0];
dst_pyr_laplace_.clear();
dst_band_weights_.clear();
compare(dst_band_weights_0(dst_rc), WEIGHT_EPS, dst_mask_, CMP_GT);
Blender::blend(dst, dst_mask);
}
}
//////////////////////////////////////////////////////////////////////////////
// Auxiliary functions
#ifdef HAVE_OPENCL
static bool ocl_normalizeUsingWeightMap(InputArray _weight, InputOutputArray _mat)
{
String buildOptions = "-D DEFINE_normalizeUsingWeightMap";
ocl::buildOptionsAddMatrixDescription(buildOptions, "mat", _mat);
ocl::buildOptionsAddMatrixDescription(buildOptions, "weight", _weight);
ocl::Kernel k("normalizeUsingWeightMap", ocl::stitching::multibandblend_oclsrc, buildOptions);
if (k.empty())
return false;
UMat mat = _mat.getUMat();
k.args(ocl::KernelArg::ReadWrite(mat),
ocl::KernelArg::ReadOnly(_weight.getUMat())
);
size_t globalsize[2] = {(size_t)mat.cols, (size_t)mat.rows };
return k.run(2, globalsize, NULL, false);
}
#endif
void normalizeUsingWeightMap(InputArray _weight, InputOutputArray _src)
{
Mat src;
Mat weight;
#ifdef HAVE_OPENCL
if ( !cv::ocl::isOpenCLActivated() ||
!ocl_normalizeUsingWeightMap(_weight, _src) )
#endif
{
src = _src.getMat();
weight = _weight.getMat();
CV_Assert(src.type() == CV_16SC3);
if (weight.type() == CV_32FC1)
{
for (int y = 0; y < src.rows; ++y)
{
Point3_<short> *row = src.ptr<Point3_<short> >(y);
const float *weight_row = weight.ptr<float>(y);
for (int x = 0; x < src.cols; ++x)
{
row[x].x = static_cast<short>(row[x].x / (weight_row[x] + WEIGHT_EPS));
row[x].y = static_cast<short>(row[x].y / (weight_row[x] + WEIGHT_EPS));
row[x].z = static_cast<short>(row[x].z / (weight_row[x] + WEIGHT_EPS));
}
}
}
else
{
CV_Assert(weight.type() == CV_16SC1);
for (int y = 0; y < src.rows; ++y)
{
const short *weight_row = weight.ptr<short>(y);
Point3_<short> *row = src.ptr<Point3_<short> >(y);
for (int x = 0; x < src.cols; ++x)
{
int w = weight_row[x] + 1;
row[x].x = static_cast<short>((row[x].x << 8) / w);
row[x].y = static_cast<short>((row[x].y << 8) / w);
row[x].z = static_cast<short>((row[x].z << 8) / w);
}
}
}
}
#ifdef HAVE_OPENCL
else
{
CV_IMPL_ADD(CV_IMPL_OCL);
}
#endif
}
void createWeightMap(InputArray mask, float sharpness, InputOutputArray weight)
{
CV_Assert(mask.type() == CV_8U);
distanceTransform(mask, weight, DIST_L1, 3);
UMat tmp;
multiply(weight, sharpness, tmp);
threshold(tmp, weight, 1.f, 1.f, THRESH_TRUNC);
}
void createLaplacePyr(InputArray img, int num_levels, std::vector<UMat> &pyr)
{
pyr.resize(num_levels + 1);
if(img.depth() == CV_8U)
{
if(num_levels == 0)
{
img.getUMat().convertTo(pyr[0], CV_16S);
return;
}
UMat downNext;
UMat current = img.getUMat();
pyrDown(img, downNext);
for(int i = 1; i < num_levels; ++i)
{
UMat lvl_up;
UMat lvl_down;
pyrDown(downNext, lvl_down);
pyrUp(downNext, lvl_up, current.size());
subtract(current, lvl_up, pyr[i-1], noArray(), CV_16S);
current = downNext;
downNext = lvl_down;
}
{
UMat lvl_up;
pyrUp(downNext, lvl_up, current.size());
subtract(current, lvl_up, pyr[num_levels-1], noArray(), CV_16S);
downNext.convertTo(pyr[num_levels], CV_16S);
}
}
else
{
pyr[0] = img.getUMat();
for (int i = 0; i < num_levels; ++i)
pyrDown(pyr[i], pyr[i + 1]);
UMat tmp;
for (int i = 0; i < num_levels; ++i)
{
pyrUp(pyr[i + 1], tmp, pyr[i].size());
subtract(pyr[i], tmp, pyr[i]);
}
}
}
void createLaplacePyrGpu(InputArray img, int num_levels, std::vector<UMat> &pyr)
{
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
pyr.resize(num_levels + 1);
std::vector<cuda::GpuMat> gpu_pyr(num_levels + 1);
gpu_pyr[0].upload(img);
for (int i = 0; i < num_levels; ++i)
cuda::pyrDown(gpu_pyr[i], gpu_pyr[i + 1]);
cuda::GpuMat tmp;
for (int i = 0; i < num_levels; ++i)
{
cuda::pyrUp(gpu_pyr[i + 1], tmp);
cuda::subtract(gpu_pyr[i], tmp, gpu_pyr[i]);
gpu_pyr[i].download(pyr[i]);
}
gpu_pyr[num_levels].download(pyr[num_levels]);
#else
CV_UNUSED(img);
CV_UNUSED(num_levels);
CV_UNUSED(pyr);
CV_Error(Error::StsNotImplemented, "CUDA optimization is unavailable");
#endif
}
void restoreImageFromLaplacePyr(std::vector<UMat> &pyr)
{
if (pyr.empty())
return;
UMat tmp;
for (size_t i = pyr.size() - 1; i > 0; --i)
{
pyrUp(pyr[i], tmp, pyr[i - 1].size());
add(tmp, pyr[i - 1], pyr[i - 1]);
}
}
void restoreImageFromLaplacePyrGpu(std::vector<UMat> &pyr)
{
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
if (pyr.empty())
return;
std::vector<cuda::GpuMat> gpu_pyr(pyr.size());
for (size_t i = 0; i < pyr.size(); ++i)
gpu_pyr[i].upload(pyr[i]);
cuda::GpuMat tmp;
for (size_t i = pyr.size() - 1; i > 0; --i)
{
cuda::pyrUp(gpu_pyr[i], tmp);
cuda::add(tmp, gpu_pyr[i - 1], gpu_pyr[i - 1]);
}
gpu_pyr[0].download(pyr[0]);
#else
CV_UNUSED(pyr);
CV_Error(Error::StsNotImplemented, "CUDA optimization is unavailable");
#endif
}
} // namespace detail
} // namespace cv