- 
Basics of deep learning
- Introduction, backpropagation algorithm
 - Empirical risk minimization, standard loss functions, linear classification, stochastic optimizers
 
 - 
Computer vision
- Convolutional networks (ConvNets), classifying images. Homework
 - "Deep" computer vision beyond classification: Verification tasks, object detection architectures, semantic segmentation
 - Generation networks
 
-- Article deadline: Journal club --- Generation: AE, VAE, GAN. Homework
 
 - 
Natural language processing
- Word embeddings, word2vec and other variants, convolutional networks for natural language
 - RNN, LSTM. Homework
 - Sequence2sequence, attention, transformers and other advanced techniques
 
-- Article deadline: present current results -- - 
Deep reinfocrement learning. Homework
 - 
Adverserial examples, MobileNet, distillation, dark knowledge
-- Artice deadline: present final results -- 
Lecture Introduction, backpropagation algorithm .pptx, .pdf
Seminar Introduction to pytorch.
Homework: Fill Seminar 1 notebook and send it to AnyTask until 13.02.19 (8:00)
Lecture Optimization for Deep Learning .pptx, .pdf.
Seminar High level pytorch.
Homework:
- Please read good logloss explanation here: https://dyakonov.org/2018/03/12/логистическая-функция-ошибки/
 - Fill Seminar 2 notebook and send it to AnyTask until 20.02.19 (8:00)
 
Lecture Convolutional Networks. .pptx, .pdf
Seminar Cifar10 finetuning.
Homework:
- Fill Seminar 3 notebook
 - HW1 Cifar10 classification.
 
Lecture Convolutional Networks in Computer Vision (segmentation, detection, verification) .pptx, .pdf
Seminar Dense prediction.
Homework:
- Fill Seminar 4 notebook
 - Find an article for journal club (13.03).
 
Lecture Generative Convolutional Networks .pptx, .pdf
Seminar Neural Style Transfer.
Homework:
- Fill Seminar 5 notebook
 - Find an article for journal club (13.03).
 
Lecture Autoencoders and GANs. .pptx, .pdf
Useful link – VAE: https://neurohive.io/ru/osnovy-data-science/variacionnyj-avtojenkoder-vae/
Seminar Fashion-MNIST GAN
Homework:
- Fill Seminar 6 notebook
 
Lecture NLP intro, ConvNets for NLP, Word embeddings.
Seminar w2v
Homework:
- Fill Seminar 7 notebook
 
Lecture RNN, LSTM. .pptx, .pdf
Seminar Char RNN
Homework:
- LSTM – http://colah.github.io/posts/2015-08-Understanding-LSTMs/
 - То же на русском – https://habr.com/ru/company/wunderfund/blog/331310/
 - Attention – https://www.youtube.com/watch?v=k63pDjKV3Ew
 - Fill Seminar 8 notebook
 - HW3 Image captioning
 
Lecture Speech2Text. Seq2seq. Transformer .pptx, .pdf
Seminar Seq2seq
Homework:
- Fill Seminar 9 notebook
 - Upload intermediate results of course work
 
Lecture Reinforcement learning w/o NN. .pptx, .pdf
Seminar Q-learning
Homework:
- Fill Seminar 10 notebook
 
Lecture Deep Reinforcement Learning. DQN, Policy gradients. .pptx, .pdf
Seminar -
Homework:
- Project
 
- 10 seminar tasks: 4 points each
 - 4 homeworks: 10 points each
 - 1 article implementation + journal club. 5 (journal club) + 5 (current results) + 10 (final results) points
 
Submissions missed deadlines are estimated at half points maximum.
Total sum is 100 points. Course grades:
- 80 points -> 8/10
 - 50 points -> 5/10
 - 30 points -> 3/10