-
Notifications
You must be signed in to change notification settings - Fork 0
/
gset.v
290 lines (247 loc) · 11.8 KB
/
gset.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
(** Cameras for non-empty [gset]. *)
From stdpp Require Export sets gmap mapset.
From iris.algebra Require Export cmra gset.
From iris.algebra Require Import updates local_updates big_op.
From iris.prelude Require Import options.
Record gneset K `{Countable K} := GNESet {
gneset_gset : gset K;
gneset_ne : bool_decide (gneset_gset ≠ ∅);
}.
Global Arguments GNESet {_ _ _} _ _ : assert.
Global Arguments gneset_gset {_ _ _} _ : assert.
Program Definition mk_gneset `{Countable K} (x : K) (s : gset K) :=
GNESet ({[x]} ∪ s) _.
Next Obligation. intros. apply bool_decide_pack. set_solver. Qed.
(* Program Definition gneset_map `{Countable A, Countable B} *)
(* (f : A → B) (X : gneset A) : gneset B := *)
(* GNESet (set_map f (gneset_gset X)) _. *)
(* Next Obligation. *)
(* intros. destruct X as [X' NE]. simpl. *)
(* apply bool_decide_unpack in NE. *)
(* apply bool_decide_pack. set_solver. *)
(* Qed. *)
(* general properties *)
Section gneset.
Context `{Countable K}.
Implicit Types (x : K) (X Y : gneset K).
Lemma gneset_eq (X1 X2 : gneset K) :
X1 = X2 ↔ gneset_gset X1 = gneset_gset X2.
Proof.
split; [by intros ->|intros]. destruct X1, X2; simplify_eq/=.
f_equal; apply proof_irrel.
Qed.
Global Instance gneset_eq_dec : EqDecision (gneset K).
Proof.
refine (λ X1 X2, cast_if (decide (gneset_gset X1 = gneset_gset X2)));
abstract (by rewrite gneset_eq).
Defined.
Global Instance gneset_elem_of: ElemOf K (gneset K) :=
λ x X, elem_of x (gneset_gset X).
(* no [Empty] *)
Global Program Instance gneset_singleton : Singleton K (gneset K) :=
λ x, GNESet (singleton x) _.
Next Obligation. intro. apply bool_decide_pack. set_solver. Qed.
Global Program Instance gneset_union : Union (gneset K) :=
λ X1 X2, GNESet (gneset_gset X1 ∪ gneset_gset X2) _.
Next Obligation.
intros [X1 HX1] [X2 HX2]. apply bool_decide_pack. simpl.
apply bool_decide_unpack in HX1, HX2. set_solver.
Qed.
(* no [Intersection], [Difference] *)
Global Instance gneset_elements : Elements K (gneset K) :=
λ X, elements (gneset_gset X).
Global Program Instance gneset_countable : Countable (gneset K) :=
inj_countable
gneset_gset
(λ (X : gset _), if decide (X ≠ ∅) then Some (GNESet X _) else None)
_.
Next Obligation. intros. by case_decide. Qed.
Next Obligation.
intros [X HX]. simpl. apply bool_decide_unpack in HX as ?.
case_decide; [|done]. f_equal. by apply gneset_eq.
Qed.
Global Instance gneset_equiv_dec : RelDecision (≡@{gneset K}) | 1 :=
λ X1 X2, decide_rel (≡) (gneset_gset X1) (gneset_gset X2).
Global Instance gneset_elem_of_dec : RelDecision (∈@{gneset K}) | 1 :=
λ x X, decide_rel (∈) x (gneset_gset X).
(* Local Instance : Disjoint (gset K) := _. *)
(* (* FIXME: [Disjoint (gset K)] is not satisfied without the above explicit *)
(* instance. Why??? [gneset_subseteq_dec] also has the same issue. *) *)
(* Global Instance gneset_disjoint_dec : RelDecision (##@{gneset K}) := *)
(* λ X1 X2, decide_rel (##) (gneset_gset X1) (gneset_gset X2). *)
Lemma gneset_disjoint (X1 X2 : gneset K) :
X1 ## X2 ↔ gneset_gset X1 ## gneset_gset X2.
Proof. reflexivity. (* ??? *) Qed.
(* Local Instance : SubsetEq (gset K) := _. *)
(* Global Instance gneset_subseteq_dec : RelDecision (⊆@{gneset K}) := *)
(* λ X1 X2, decide_rel (⊆) (gneset_gset X1) (gneset_gset X2). *)
(* Global Arguments gneset_eq_dec : simpl never. *)
(* Global Arguments gneset_elem_of : simpl never. *)
(* Global Arguments gneset_singleton : simpl never. *)
(* Global Arguments gneset_union : simpl never. *)
(* Global Arguments gneset_elements : simpl never. *)
(* Global Arguments gneset_eq_dec : simpl never. *)
(* Global Arguments gneset_countable : simpl never. *)
(* Global Arguments gneset_equiv_dec : simpl never. *)
(* Global Arguments gneset_elem_of_dec : simpl never. *)
(* Global Arguments gneset_disjoint_dec : simpl never. *)
(* Global Arguments gneset_subseteq_dec : simpl never. *)
Local Instance gneset_dist : Dist (gneset K) :=
λ n '(GNESet X1 _) '(GNESet X2 _), X1 ≡{n}≡ X2.
Local Instance gneset_equiv : Equiv (gneset K) :=
λ '(GNESet X1 _) '(GNESet X2 _), X1 ≡ X2.
Definition gneset_ofe_mixin : OfeMixin (gneset K).
Proof.
split.
- intros [X1] [X2]; apply equiv_dist.
- intros n; split.
+ by intros [x].
+ by intros [X1] [X2] ? ?.
+ intros [X1] [X2] [X3] ?? k. by trans (k ∈ X2).
- done.
Qed.
Canonical Structure gnesetO : ofe := Ofe (gneset K) gneset_ofe_mixin.
End gneset.
Global Arguments gnesetO _ {_ _}.
Inductive gneset_disj K `{Countable K} :=
| GNESetDisj : gneset K → gneset_disj K
| GNESetDisjBot : gneset_disj K.
Global Arguments GNESetDisj {_ _ _} _.
Global Arguments GNESetDisjBot {_ _ _}.
(* Like [ufrac], but non-fungible. *)
Section gneset_disj.
Context `{Countable K}.
Local Arguments op _ _ !_ !_ /.
Local Arguments cmra_op _ !_ !_ /.
Local Arguments ucmra_op _ !_ !_ /.
Local Arguments union _ _ !_ !_ /.
Local Arguments gneset_union _ _ _ !_ !_ /.
Canonical Structure gneset_disjO := leibnizO (gneset_disj K).
Local Instance gneset_disj_valid_instance : Valid (gneset_disj K) := λ X,
match X with GNESetDisj _ => True | GNESetDisjBot => False end.
Local Instance gneset_disj_op_instance : Op (gneset_disj K) := λ X Y,
match X, Y with
| GNESetDisj X, GNESetDisj Y =>
if decide (gneset_gset X ## gneset_gset Y) then GNESetDisj (X ∪ Y) else GNESetDisjBot
| _, _ => GNESetDisjBot
end.
Local Instance gneset_disj_pcore_instance : PCore (gneset_disj K) := λ _, None.
Ltac gneset_disj_solve :=
repeat (simpl || case_decide);
first [apply (f_equal GNESetDisj)|done|exfalso];
try apply gneset_eq;
set_solver.
(* Lemma gneset_disj_included X Y : GNESetDisj X ≼ GNESetDisj Y ↔ X ⊆ Y. *)
(* Proof. *)
(* split. *)
(* - move=> [[Z|]]; simpl; try case_decide; set_solver. *)
(* - intros (Z&->&?)%subseteq_disjoint_union_L. *)
(* exists (GNESetDisj Z). gneset_disj_solve. *)
(* Qed. *)
Lemma gneset_disj_valid_inv_l X Y : ✓ (GNESetDisj X ⋅ Y) → ∃ Y', Y = GNESetDisj Y' ∧ X ## Y'.
Proof. destruct Y; repeat (simpl || case_decide); by eauto. Qed.
Lemma gneset_disj_union X Y : X ## Y → GNESetDisj X ⋅ GNESetDisj Y = GNESetDisj (X ∪ Y).
Proof. intros. by rewrite /= decide_True. Qed.
Lemma gneset_disj_valid_op X Y : ✓ (GNESetDisj X ⋅ GNESetDisj Y) ↔ X ## Y.
Proof. simpl. case_decide; split; try done. Qed.
Lemma gneset_disj_ra_mixin : RAMixin (gneset_disj K).
Proof.
split; try apply _; try done.
- intros [[X1 ?]|] [[X2 ?]|] [[X3 ?]|]; gneset_disj_solve.
- intros [[X1 ?]|] [[X2 ?]|]; gneset_disj_solve.
- intros [[X1 ?]|] [[X2 ?]|]; gneset_disj_solve.
Qed.
Canonical Structure gneset_disjR := discreteR (gneset_disj K) gneset_disj_ra_mixin.
Global Instance gneset_disj_cmra_discrete : CmraDiscrete gneset_disjR.
Proof. apply discrete_cmra_discrete. Qed.
Local Arguments op _ _ _ _ : simpl never.
(* Lemma gneset_disj_alloc_updateP_strong P (Q : gneset_disj K → Prop) X : *)
(* (∀ Y, X ⊆ Y → ∃ j, j ∉ Y ∧ P j) → *)
(* (∀ i, i ∉ X → P i → Q (GNESetDisj ({[i]} ∪ X))) → *)
(* GNESetDisj X ~~>: Q. *)
(* Proof. *)
(* intros Hfresh HQ. *)
(* apply cmra_discrete_updateP=> ? /gneset_disj_valid_inv_l [Y [->?]]. *)
(* destruct (Hfresh (X ∪ Y)) as (i&?&?); first set_solver. *)
(* exists (GNESetDisj ({[ i ]} ∪ X)); split. *)
(* - apply HQ; set_solver by eauto. *)
(* - apply gneset_disj_valid_op. set_solver by eauto. *)
(* Qed. *)
(* Lemma gneset_disj_alloc_updateP_strong' P X : *)
(* (∀ Y, X ⊆ Y → ∃ j, j ∉ Y ∧ P j) → *)
(* GNESetDisj X ~~>: λ Y, ∃ i, Y = GNESetDisj ({[ i ]} ∪ X) ∧ i ∉ X ∧ P i. *)
(* Proof. eauto using gneset_disj_alloc_updateP_strong. Qed. *)
(* Lemma gneset_disj_alloc_empty_updateP_strong P (Q : gneset_disj K → Prop) : *)
(* (∀ Y : gneset K, ∃ j, j ∉ Y ∧ P j) → *)
(* (∀ i, P i → Q (GNESetDisj {[i]})) → GNESetDisj ∅ ~~>: Q. *)
(* Proof. *)
(* intros. apply (gneset_disj_alloc_updateP_strong P); eauto. *)
(* intros i; rewrite right_id_L; auto. *)
(* Qed. *)
(* Lemma gneset_disj_alloc_empty_updateP_strong' P : *)
(* (∀ Y : gneset K, ∃ j, j ∉ Y ∧ P j) → *)
(* GNESetDisj ∅ ~~>: λ Y, ∃ i, Y = GNESetDisj {[ i ]} ∧ P i. *)
(* Proof. eauto using gneset_disj_alloc_empty_updateP_strong. Qed. *)
(* Section fresh_updates. *)
(* Local Set Default Proof Using "Type*". *)
(* Context `{!Infinite K}. *)
(* Lemma gneset_disj_alloc_updateP (Q : gneset_disj K → Prop) X : *)
(* (∀ i, i ∉ X → Q (GNESetDisj ({[i]} ∪ X))) → GNESetDisj X ~~>: Q. *)
(* Proof. *)
(* intro; eapply gneset_disj_alloc_updateP_strong with (λ _, True); eauto. *)
(* intros Y ?; exists (fresh Y). split; [|done]. apply is_fresh. *)
(* Qed. *)
(* Lemma gneset_disj_alloc_updateP' X : *)
(* GNESetDisj X ~~>: λ Y, ∃ i, Y = GNESetDisj ({[ i ]} ∪ X) ∧ i ∉ X. *)
(* Proof. eauto using gneset_disj_alloc_updateP. Qed. *)
(* Lemma gneset_disj_alloc_empty_updateP (Q : gneset_disj K → Prop) : *)
(* (∀ i, Q (GNESetDisj {[i]})) → GNESetDisj ∅ ~~>: Q. *)
(* Proof. *)
(* intro. apply gneset_disj_alloc_updateP. intros i; rewrite right_id_L; auto. *)
(* Qed. *)
(* Lemma gneset_disj_alloc_empty_updateP' : GNESetDisj ∅ ~~>: λ Y, ∃ i, Y = GNESetDisj {[ i ]}. *)
(* Proof. eauto using gneset_disj_alloc_empty_updateP. Qed. *)
(* End fresh_updates. *)
(* Lemma gneset_disj_dealloc_local_update X Y : *)
(* (GNESetDisj X, GNESetDisj Y) ~l~> (GNESetDisj (X ∖ Y), GNESetDisj ∅). *)
(* Proof. *)
(* apply local_update_total_valid=> _ _ /gneset_disj_included HYX. *)
(* rewrite local_update_unital_discrete=> -[Xf|] _ /leibniz_equiv_iff //=. *)
(* rewrite {1}/op /=. destruct (decide _) as [HXf|]; [intros[= ->]|done]. *)
(* by rewrite difference_union_distr_l_L *)
(* difference_diag_L !left_id_L difference_disjoint_L. *)
(* Qed. *)
(* Lemma gneset_disj_dealloc_empty_local_update X Z : *)
(* (GNESetDisj Z ⋅ GNESetDisj X, GNESetDisj Z) ~l~> (GNESetDisj X, GNESetDisj ∅). *)
(* Proof. *)
(* apply local_update_total_valid=> /gneset_disj_valid_op HZX _ _. *)
(* assert (X = (Z ∪ X) ∖ Z) as HX by set_solver. *)
(* rewrite gneset_disj_union // {2}HX. apply gneset_disj_dealloc_local_update. *)
(* Qed. *)
(* Lemma gneset_disj_dealloc_op_local_update X Y Z : *)
(* (GNESetDisj Z ⋅ GNESetDisj X, GNESetDisj Z ⋅ GNESetDisj Y) ~l~> (GNESetDisj X,GNESetDisj Y). *)
(* Proof. *)
(* rewrite -{2}(left_id ε _ (GNESetDisj Y)). *)
(* apply op_local_update_frame, gneset_disj_dealloc_empty_local_update. *)
(* Qed. *)
Lemma gneset_disj_alloc_op_local_update X Y Z :
Z ## X → (GNESetDisj X,GNESetDisj Y) ~l~> (GNESetDisj Z ⋅ GNESetDisj X, GNESetDisj Z ⋅ GNESetDisj Y).
Proof.
intros. apply op_local_update_discrete. by rewrite gneset_disj_valid_op.
Qed.
(* Lemma gneset_disj_alloc_local_update X Y Z : *)
(* Z ## X → (GNESetDisj X,GNESetDisj Y) ~l~> (GNESetDisj (Z ∪ X), GNESetDisj (Z ∪ Y)). *)
(* Proof. *)
(* intros. apply local_update_total_valid=> _ _ /gneset_disj_included ?. *)
(* rewrite -!gneset_disj_union //; last set_solver. *)
(* auto using gneset_disj_alloc_op_local_update. *)
(* Qed. *)
(* Lemma gneset_disj_alloc_empty_local_update X Z : *)
(* Z ## X → (GNESetDisj X, GNESetDisj ∅) ~l~> (GNESetDisj (Z ∪ X), GNESetDisj Z). *)
(* Proof. *)
(* intros. rewrite -{2}(right_id_L _ union Z). *)
(* apply gneset_disj_alloc_local_update; set_solver. *)
(* Qed. *)
End gneset_disj.
Global Arguments gneset_disjO _ {_ _}.
Global Arguments gneset_disjR _ {_ _}.