Skip to content

Commit a7ef929

Browse files
authored
Update README.md
1 parent c5f8708 commit a7ef929

File tree

1 file changed

+26
-3
lines changed

1 file changed

+26
-3
lines changed

README.md

Lines changed: 26 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -245,11 +245,11 @@ FPS(Speed) index is related to the hardware spec(e.g. CPU, GPU, RAM, etc), so it
245245

246246
- **[CAMOU]** CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild | **[ICLR' 19]** |[`[pdf]`](https://openreview.net/pdf?id=SJgEl3A5tm)
247247

248-
- Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1902.09630.pdf)
248+
- **[GIoU]** Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1902.09630.pdf)
249249

250250
- Automatic adaptation of object detectors to new domains using self-training | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.07305.pdf)
251251

252-
- Libra R-CNN: Balanced Learning for Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.02701.pdf)
252+
- **[Libra R-CNN]** Libra R-CNN: Balanced Learning for Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.02701.pdf)
253253

254254
- Feature Selective Anchor-Free Module for Single-Shot Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1903.00621.pdf)
255255

@@ -260,8 +260,31 @@ FPS(Speed) index is related to the hardware spec(e.g. CPU, GPU, RAM, etc), so it
260260

261261
- **[ScratchDet]** ScratchDet: Training Single-Shot Object Detectors from Scratch | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1810.08425.pdf)
262262

263-
- Learning RoI Transformer for Oriented Object Detection in Aerial Images | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1812.00155.pdf)
263+
- Bounding Box Regression with Uncertainty for Accurate Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1809.08545.pdf) | [`[official code - caffe2]`](https://github.com/yihui-he/KL-Loss)
264264

265+
- Activity Driven Weakly Supervised Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.01665.pdf) | [`[official code - pytorch]`](https://github.com/zhenheny/ADWSOD)
266+
267+
- Towards Accurate One-Stage Object Detection with AP-Loss | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.06373.pdf)
268+
269+
- Strong-Weak Distribution Alignment for Adaptive Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1812.04798.pdf) | [`[official code - pytorch]`](https://github.com/VisionLearningGroup/DA_Detection)
270+
271+
- **[NAS-FPN]** NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.07392.pdf)
272+
273+
- **[Adaptive NMS]** Adaptive NMS: Refining Pedestrian Detection in a Crowd | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.03629.pdf)
274+
275+
- Point in, Box out: Beyond Counting Persons in Crowds | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.01333.pdf)
276+
277+
- Locating Objects Without Bounding Boxes | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1806.07564.pdf)
278+
279+
- Sampling Techniques for Large-Scale Object Detection from Sparsely Annotated Objects | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1811.10862.pdf)
280+
281+
- Towards Universal Object Detection by Domain Attention | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.04402.pdf)
282+
283+
- Exploring the Bounds of the Utility of Context for Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1711.05471.pdf)
284+
285+
- What Object Should I Use? - Task Driven ObjeWhat Object Should I Use? - Task Driven Object Detectionct Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.03000.pdf)
286+
287+
- Dissimilarity Coefficient based Weakly Supervised Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1811.10016)
265288

266289

267290
##

0 commit comments

Comments
 (0)