-
Notifications
You must be signed in to change notification settings - Fork 0
/
costFunctionReg.m
30 lines (22 loc) · 1.09 KB
/
costFunctionReg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
hx = sigmoid(X*theta);
reg_theta = theta;
reg_theta(1) = 0;
J = (-1/m)*(y'*log(hx) + (1-y)'*log(1-hx)) + (lambda/(2*m))*(reg_theta'*reg_theta);
grad = (1/m)*(X'*(hx-y)) + (lambda/m)*reg_theta;
% =============================================================
end