-
Notifications
You must be signed in to change notification settings - Fork 308
/
conformer.py
1822 lines (1598 loc) · 70.7 KB
/
conformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import math
import warnings
from typing import List, Optional, Tuple
import torch
from encoder_interface import EncoderInterface
from scaling import (
ActivationBalancer,
BasicNorm,
DoubleSwish,
ScaledConv1d,
ScaledConv2d,
ScaledLinear,
)
from torch import Tensor, nn
from icefall.utils import is_jit_tracing, make_pad_mask, subsequent_chunk_mask
class Conformer(EncoderInterface):
"""
Args:
num_features (int): Number of input features
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
d_model (int): attention dimension, also the output dimension
nhead (int): number of head
dim_feedforward (int): feedforward dimention
num_encoder_layers (int): number of encoder layers
dropout (float): dropout rate
layer_dropout (float): layer-dropout rate.
cnn_module_kernel (int): Kernel size of convolution module.
dynamic_chunk_training (bool): whether to use dynamic chunk training, if
you want to train a streaming model, this is expected to be True.
When setting True, it will use a masking strategy to make the attention
see only limited left and right context.
short_chunk_threshold (float): a threshold to determinize the chunk size
to be used in masking training, if the randomly generated chunk size
is greater than ``max_len * short_chunk_threshold`` (max_len is the
max sequence length of current batch) then it will use
full context in training (i.e. with chunk size equals to max_len).
This will be used only when dynamic_chunk_training is True.
short_chunk_size (int): see docs above, if the randomly generated chunk
size equals to or less than ``max_len * short_chunk_threshold``, the
chunk size will be sampled uniformly from 1 to short_chunk_size.
This also will be used only when dynamic_chunk_training is True.
num_left_chunks (int): the left context (in chunks) attention can see, the
chunk size is decided by short_chunk_threshold and short_chunk_size.
A minus value means seeing full left context.
This also will be used only when dynamic_chunk_training is True.
causal (bool): Whether to use causal convolution in conformer encoder
layer. This MUST be True when using dynamic_chunk_training.
"""
def __init__(
self,
num_features: int,
subsampling_factor: int = 4,
d_model: int = 256,
nhead: int = 4,
dim_feedforward: int = 2048,
num_encoder_layers: int = 12,
dropout: float = 0.1,
layer_dropout: float = 0.075,
cnn_module_kernel: int = 31,
aux_layer_period: int = 3,
dynamic_chunk_training: bool = False,
short_chunk_threshold: float = 0.75,
short_chunk_size: int = 25,
num_left_chunks: int = -1,
causal: bool = False,
) -> None:
super(Conformer, self).__init__()
self.num_features = num_features
self.subsampling_factor = subsampling_factor
if subsampling_factor != 4:
raise NotImplementedError("Support only 'subsampling_factor=4'.")
# self.encoder_embed converts the input of shape (N, T, num_features)
# to the shape (N, T//subsampling_factor, d_model).
# That is, it does two things simultaneously:
# (1) subsampling: T -> T//subsampling_factor
# (2) embedding: num_features -> d_model
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
self.encoder_layers = num_encoder_layers
self.d_model = d_model
self.cnn_module_kernel = cnn_module_kernel
self.causal = causal
self.dynamic_chunk_training = dynamic_chunk_training
self.short_chunk_threshold = short_chunk_threshold
self.short_chunk_size = short_chunk_size
self.num_left_chunks = num_left_chunks
encoder_layer = ConformerEncoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout,
layer_dropout=layer_dropout,
cnn_module_kernel=cnn_module_kernel,
causal=causal,
)
# aux_layers from 1/3
self.encoder = ConformerEncoder(
encoder_layer=encoder_layer,
num_layers=num_encoder_layers,
aux_layers=list(
range(
num_encoder_layers // 3,
num_encoder_layers - 1,
aux_layer_period,
)
),
)
self._init_state: List[torch.Tensor] = [torch.empty(0)]
def forward(
self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x:
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
x_lens:
A tensor of shape (batch_size,) containing the number of frames in
`x` before padding.
warmup:
A floating point value that gradually increases from 0 throughout
training; when it is >= 1.0 we are "fully warmed up". It is used
to turn modules on sequentially.
Returns:
Return a tuple containing 2 tensors:
- embeddings: its shape is (batch_size, output_seq_len, d_model)
- lengths, a tensor of shape (batch_size,) containing the number
of frames in `embeddings` before padding.
"""
x = self.encoder_embed(x)
x, pos_emb = self.encoder_pos(x)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
lengths = (((x_lens - 1) >> 1) - 1) >> 1
assert x.size(0) == lengths.max().item()
src_key_padding_mask = make_pad_mask(lengths)
if self.dynamic_chunk_training:
assert (
self.causal
), "Causal convolution is required for streaming conformer."
max_len = x.size(0)
chunk_size = torch.randint(1, max_len, (1,)).item()
if chunk_size > (max_len * self.short_chunk_threshold):
chunk_size = max_len
else:
chunk_size = chunk_size % self.short_chunk_size + 1
mask = ~subsequent_chunk_mask(
size=x.size(0),
chunk_size=chunk_size,
num_left_chunks=self.num_left_chunks,
device=x.device,
)
x = self.encoder(
x,
pos_emb,
mask=mask,
src_key_padding_mask=src_key_padding_mask,
warmup=warmup,
) # (T, N, C)
else:
x = self.encoder(
x,
pos_emb,
src_key_padding_mask=src_key_padding_mask,
warmup=warmup,
) # (T, N, C)
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
return x, lengths
@torch.jit.export
def get_init_state(
self, left_context: int, device: torch.device
) -> List[torch.Tensor]:
"""Return the initial cache state of the model.
Args:
left_context: The left context size (in frames after subsampling).
Returns:
Return the initial state of the model, it is a list containing two
tensors, the first one is the cache for attentions which has a shape
of (num_encoder_layers, left_context, encoder_dim), the second one
is the cache of conv_modules which has a shape of
(num_encoder_layers, cnn_module_kernel - 1, encoder_dim).
NOTE: the returned tensors are on the given device.
"""
if len(self._init_state) == 2 and self._init_state[0].size(1) == left_context:
# Note: It is OK to share the init state as it is
# not going to be modified by the model
return self._init_state
init_states: List[torch.Tensor] = [
torch.zeros(
(
self.encoder_layers,
left_context,
self.d_model,
),
device=device,
),
torch.zeros(
(
self.encoder_layers,
self.cnn_module_kernel - 1,
self.d_model,
),
device=device,
),
]
self._init_state = init_states
return init_states
@torch.jit.export
def streaming_forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
states: Optional[List[Tensor]] = None,
processed_lens: Optional[Tensor] = None,
left_context: int = 64,
right_context: int = 4,
chunk_size: int = 16,
simulate_streaming: bool = False,
warmup: float = 1.0,
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
"""
Args:
x:
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
x_lens:
A tensor of shape (batch_size,) containing the number of frames in
`x` before padding.
states:
The decode states for previous frames which contains the cached data.
It has two elements, the first element is the attn_cache which has
a shape of (encoder_layers, left_context, batch, attention_dim),
the second element is the conv_cache which has a shape of
(encoder_layers, cnn_module_kernel-1, batch, conv_dim).
Note: states will be modified in this function.
processed_lens:
How many frames (after subsampling) have been processed for each sequence.
left_context:
How many previous frames the attention can see in current chunk.
Note: It's not that each individual frame has `left_context` frames
of left context, some have more.
right_context:
How many future frames the attention can see in current chunk.
Note: It's not that each individual frame has `right_context` frames
of right context, some have more.
chunk_size:
The chunk size for decoding, this will be used to simulate streaming
decoding using masking.
simulate_streaming:
If setting True, it will use a masking strategy to simulate streaming
fashion (i.e. every chunk data only see limited left context and
right context). The whole sequence is supposed to be send at a time
When using simulate_streaming.
warmup:
A floating point value that gradually increases from 0 throughout
training; when it is >= 1.0 we are "fully warmed up". It is used
to turn modules on sequentially.
Returns:
Return a tuple containing 2 tensors:
- logits, its shape is (batch_size, output_seq_len, output_dim)
- logit_lens, a tensor of shape (batch_size,) containing the number
of frames in `logits` before padding.
- decode_states, the updated states including the information
of current chunk.
"""
# x: [N, T, C]
# Caution: We assume the subsampling factor is 4!
# lengths = ((x_lens - 1) // 2 - 1) // 2 # issue an warning
#
# Note: rounding_mode in torch.div() is available only in torch >= 1.8.0
lengths = (((x_lens - 1) >> 1) - 1) >> 1
if not simulate_streaming:
assert states is not None
assert processed_lens is not None
assert (
len(states) == 2
and states[0].shape
== (self.encoder_layers, left_context, x.size(0), self.d_model)
and states[1].shape
== (
self.encoder_layers,
self.cnn_module_kernel - 1,
x.size(0),
self.d_model,
)
), f"""The length of states MUST be equal to 2, and the shape of
first element should be {(self.encoder_layers, left_context, x.size(0), self.d_model)},
given {states[0].shape}. the shape of second element should be
{(self.encoder_layers, self.cnn_module_kernel - 1, x.size(0), self.d_model)},
given {states[1].shape}."""
lengths -= 2 # we will cut off 1 frame on each side of encoder_embed output
src_key_padding_mask = make_pad_mask(lengths)
processed_mask = torch.arange(left_context, device=x.device).expand(
x.size(0), left_context
)
processed_lens = processed_lens.view(x.size(0), 1)
processed_mask = (processed_lens <= processed_mask).flip(1)
src_key_padding_mask = torch.cat(
[processed_mask, src_key_padding_mask], dim=1
)
embed = self.encoder_embed(x)
# cut off 1 frame on each size of embed as they see the padding
# value which causes a training and decoding mismatch.
embed = embed[:, 1:-1, :]
embed, pos_enc = self.encoder_pos(embed, left_context)
embed = embed.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
x, states = self.encoder.chunk_forward(
embed,
pos_enc,
src_key_padding_mask=src_key_padding_mask,
warmup=warmup,
states=states,
left_context=left_context,
right_context=right_context,
) # (T, B, F)
if right_context > 0:
x = x[0:-right_context, ...]
lengths -= right_context
else:
assert states is None
states = [] # just to make torch.script.jit happy
# this branch simulates streaming decoding using mask as we are
# using in training time.
src_key_padding_mask = make_pad_mask(lengths)
x = self.encoder_embed(x)
x, pos_emb = self.encoder_pos(x)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
assert x.size(0) == lengths.max().item()
num_left_chunks = -1
if left_context >= 0:
assert left_context % chunk_size == 0
num_left_chunks = left_context // chunk_size
mask = ~subsequent_chunk_mask(
size=x.size(0),
chunk_size=chunk_size,
num_left_chunks=num_left_chunks,
device=x.device,
)
x = self.encoder(
x,
pos_emb,
mask=mask,
src_key_padding_mask=src_key_padding_mask,
warmup=warmup,
) # (T, N, C)
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
return x, lengths, states
class ConformerEncoderLayer(nn.Module):
"""
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
cnn_module_kernel (int): Kernel size of convolution module.
causal (bool): Whether to use causal convolution in conformer encoder
layer. This MUST be True when using dynamic_chunk_training and streaming decoding.
Examples::
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> pos_emb = torch.rand(32, 19, 512)
>>> out = encoder_layer(src, pos_emb)
"""
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
layer_dropout: float = 0.075,
cnn_module_kernel: int = 31,
causal: bool = False,
) -> None:
super(ConformerEncoderLayer, self).__init__()
self.layer_dropout = layer_dropout
self.d_model = d_model
self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
self.feed_forward = nn.Sequential(
ScaledLinear(d_model, dim_feedforward),
ActivationBalancer(channel_dim=-1),
DoubleSwish(),
nn.Dropout(dropout),
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
)
self.feed_forward_macaron = nn.Sequential(
ScaledLinear(d_model, dim_feedforward),
ActivationBalancer(channel_dim=-1),
DoubleSwish(),
nn.Dropout(dropout),
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
)
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel, causal=causal)
self.norm_final = BasicNorm(d_model)
# try to ensure the output is close to zero-mean (or at least, zero-median).
self.balancer = ActivationBalancer(
channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
)
self.dropout = nn.Dropout(dropout)
def forward(
self,
src: Tensor,
pos_emb: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
warmup: float = 1.0,
) -> Tensor:
"""
Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
pos_emb: Positional embedding tensor (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
warmup: controls selective bypass of of layers; if < 1.0, we will
bypass layers more frequently.
Shape:
src: (S, N, E).
pos_emb: (N, 2*S-1, E)
src_mask: (S, S).
src_key_padding_mask: (N, S).
S is the source sequence length, N is the batch size, E is the feature number
"""
src_orig = src
warmup_scale = min(0.1 + warmup, 1.0)
# alpha = 1.0 means fully use this encoder layer, 0.0 would mean
# completely bypass it.
if self.training:
alpha = (
warmup_scale
if torch.rand(()).item() <= (1.0 - self.layer_dropout)
else 0.1
)
else:
alpha = 1.0
# macaron style feed forward module
src = src + self.dropout(self.feed_forward_macaron(src))
# multi-headed self-attention module
src_att = self.self_attn(
src,
src,
src,
pos_emb=pos_emb,
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask,
)[0]
src = src + self.dropout(src_att)
# convolution module
conv, _ = self.conv_module(src, src_key_padding_mask=src_key_padding_mask)
src = src + self.dropout(conv)
# feed forward module
src = src + self.dropout(self.feed_forward(src))
src = self.norm_final(self.balancer(src))
if alpha != 1.0:
src = alpha * src + (1 - alpha) * src_orig
return src
@torch.jit.export
def chunk_forward(
self,
src: Tensor,
pos_emb: Tensor,
states: List[Tensor],
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
warmup: float = 1.0,
left_context: int = 0,
right_context: int = 0,
) -> Tuple[Tensor, List[Tensor]]:
"""
Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
pos_emb: Positional embedding tensor (required).
states:
The decode states for previous frames which contains the cached data.
It has two elements, the first element is the attn_cache which has
a shape of (left_context, batch, attention_dim),
the second element is the conv_cache which has a shape of
(cnn_module_kernel-1, batch, conv_dim).
Note: states will be modified in this function.
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
warmup: controls selective bypass of of layers; if < 1.0, we will
bypass layers more frequently.
left_context:
How many previous frames the attention can see in current chunk.
Note: It's not that each individual frame has `left_context` frames
of left context, some have more.
right_context:
How many future frames the attention can see in current chunk.
Note: It's not that each individual frame has `right_context` frames
of right context, some have more.
Shape:
src: (S, N, E).
pos_emb: (N, 2*(S+left_context)-1, E).
src_mask: (S, S).
src_key_padding_mask: (N, S).
S is the source sequence length, N is the batch size, E is the feature number
"""
assert not self.training
assert len(states) == 2
assert states[0].shape == (left_context, src.size(1), src.size(2))
# macaron style feed forward module
src = src + self.dropout(self.feed_forward_macaron(src))
# We put the attention cache this level (i.e. before linear transformation)
# to save memory consumption, when decoding in streaming fashion, the
# batch size would be thousands (for 32GB machine), if we cache key & val
# separately, it needs extra several GB memory.
# TODO(WeiKang): Move cache to self_attn level (i.e. cache key & val
# separately) if needed.
key = torch.cat([states[0], src], dim=0)
val = key
if right_context > 0:
states[0] = key[
-(left_context + right_context) : -right_context, ... # noqa
]
else:
states[0] = key[-left_context:, ...]
# multi-headed self-attention module
src_att = self.self_attn(
src,
key,
val,
pos_emb=pos_emb,
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask,
left_context=left_context,
)[0]
src = src + self.dropout(src_att)
# convolution module
conv, conv_cache = self.conv_module(src, states[1], right_context)
states[1] = conv_cache
src = src + self.dropout(conv)
# feed forward module
src = src + self.dropout(self.feed_forward(src))
src = self.norm_final(self.balancer(src))
return src, states
class ConformerEncoder(nn.Module):
r"""ConformerEncoder is a stack of N encoder layers
Args:
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
Examples::
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> pos_emb = torch.rand(32, 19, 512)
>>> out = conformer_encoder(src, pos_emb)
"""
def __init__(
self,
encoder_layer: nn.Module,
num_layers: int,
aux_layers: List[int],
) -> None:
super().__init__()
self.layers = nn.ModuleList(
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
)
self.num_layers = num_layers
assert len(set(aux_layers)) == len(aux_layers)
assert num_layers - 1 not in aux_layers
self.aux_layers = aux_layers + [num_layers - 1]
self.combiner = RandomCombine(
num_inputs=len(self.aux_layers),
final_weight=0.5,
pure_prob=0.333,
stddev=2.0,
)
def forward(
self,
src: Tensor,
pos_emb: Tensor,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
warmup: float = 1.0,
) -> Tensor:
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequence to the encoder (required).
pos_emb: Positional embedding tensor (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
src: (S, N, E).
pos_emb: (N, 2*S-1, E)
mask: (S, S).
src_key_padding_mask: (N, S).
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
"""
output = src
outputs = []
for i, mod in enumerate(self.layers):
output = mod(
output,
pos_emb,
src_mask=mask,
src_key_padding_mask=src_key_padding_mask,
warmup=warmup,
)
if i in self.aux_layers:
outputs.append(output)
output = self.combiner(outputs)
return output
@torch.jit.export
def chunk_forward(
self,
src: Tensor,
pos_emb: Tensor,
states: List[Tensor],
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
warmup: float = 1.0,
left_context: int = 0,
right_context: int = 0,
) -> Tuple[Tensor, List[Tensor]]:
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequence to the encoder (required).
pos_emb: Positional embedding tensor (required).
states:
The decode states for previous frames which contains the cached data.
It has two elements, the first element is the attn_cache which has
a shape of (encoder_layers, left_context, batch, attention_dim),
the second element is the conv_cache which has a shape of
(encoder_layers, cnn_module_kernel-1, batch, conv_dim).
Note: states will be modified in this function.
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
warmup: controls selective bypass of of layers; if < 1.0, we will
bypass layers more frequently.
left_context:
How many previous frames the attention can see in current chunk.
Note: It's not that each individual frame has `left_context` frames
of left context, some have more.
right_context:
How many future frames the attention can see in current chunk.
Note: It's not that each individual frame has `right_context` frames
of right context, some have more.
Shape:
src: (S, N, E).
pos_emb: (N, 2*(S+left_context)-1, E).
mask: (S, S).
src_key_padding_mask: (N, S).
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
"""
assert not self.training
assert len(states) == 2
assert states[0].shape == (
self.num_layers,
left_context,
src.size(1),
src.size(2),
)
assert states[1].size(0) == self.num_layers
output = src
for layer_index, mod in enumerate(self.layers):
cache = [states[0][layer_index], states[1][layer_index]]
output, cache = mod.chunk_forward(
output,
pos_emb,
states=cache,
src_mask=mask,
src_key_padding_mask=src_key_padding_mask,
warmup=warmup,
left_context=left_context,
right_context=right_context,
)
states[0][layer_index] = cache[0]
states[1][layer_index] = cache[1]
return output, states
class RelPositionalEncoding(torch.nn.Module):
"""Relative positional encoding module.
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
Args:
d_model: Embedding dimension.
dropout_rate: Dropout rate.
max_len: Maximum input length.
"""
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
"""Construct an PositionalEncoding object."""
super(RelPositionalEncoding, self).__init__()
self.d_model = d_model
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
def extend_pe(self, x: Tensor, left_context: int = 0) -> None:
"""Reset the positional encodings."""
x_size_1 = x.size(1) + left_context
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(1) >= x_size_1 * 2 - 1:
# Note: TorchScript doesn't implement operator== for torch.Device
if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vector and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x_size_1, self.d_model)
pe_negative = torch.zeros(x_size_1, self.d_model)
position = torch.arange(0, x_size_1, dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor, left_context: int = 0) -> Tuple[Tensor, Tensor]:
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
left_context (int): left context (in frames) used during streaming decoding.
this is used only in real streaming decoding, in other circumstances,
it MUST be 0.
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
"""
self.extend_pe(x, left_context)
x_size_1 = x.size(1) + left_context
pos_emb = self.pe[
:,
self.pe.size(1) // 2
- x_size_1
+ 1 : self.pe.size(1) // 2 # noqa E203
+ x.size(1),
]
return self.dropout(x), self.dropout(pos_emb)
class RelPositionMultiheadAttention(nn.Module):
r"""Multi-Head Attention layer with relative position encoding
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
Args:
embed_dim: total dimension of the model.
num_heads: parallel attention heads.
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
Examples::
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
) -> None:
super(RelPositionMultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
self.in_proj = ScaledLinear(embed_dim, 3 * embed_dim, bias=True)
self.out_proj = ScaledLinear(
embed_dim, embed_dim, bias=True, initial_scale=0.25
)
# linear transformation for positional encoding.
self.linear_pos = ScaledLinear(embed_dim, embed_dim, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach())
self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach())
self._reset_parameters()
def _pos_bias_u(self):
return self.pos_bias_u * self.pos_bias_u_scale.exp()
def _pos_bias_v(self):
return self.pos_bias_v * self.pos_bias_v_scale.exp()
def _reset_parameters(self) -> None:
nn.init.normal_(self.pos_bias_u, std=0.01)
nn.init.normal_(self.pos_bias_v, std=0.01)
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
pos_emb: Tensor,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
left_context: int = 0,
) -> Tuple[Tensor, Optional[Tensor]]:
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
pos_emb: Positional embedding tensor
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. When given a binary mask and a value is True,
the corresponding value on the attention layer will be ignored. When given
a byte mask and a value is non-zero, the corresponding value on the attention
layer will be ignored
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
left_context (int): left context (in frames) used during streaming decoding.
this is used only in real streaming decoding, in other circumstances,
it MUST be 0.
Shape:
- Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a ByteTensor is provided, the non-zero positions will be ignored while the position
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- Outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
return self.multi_head_attention_forward(
query,
key,
value,
pos_emb,
self.embed_dim,
self.num_heads,
self.in_proj.get_weight(),
self.in_proj.get_bias(),
self.dropout,
self.out_proj.get_weight(),
self.out_proj.get_bias(),
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
left_context=left_context,
)
def rel_shift(self, x: Tensor, left_context: int = 0) -> Tensor:
"""Compute relative positional encoding.
Args:
x: Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
left_context (int): left context (in frames) used during streaming decoding.