-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
162 lines (150 loc) · 4.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
from argparse import ArgumentParser, Namespace
from pathlib import Path
import wandb
from miditok import REMI, TokenizerConfig
from miditok.pytorch_data import DatasetMIDI, DataCollator
from torch.utils.data import DataLoader
from transformers import AutoModelForCausalLM
from src.constants import PROJECT_NAME, CHECKPOINT_DIR, CONFIG_FILE
from src.optimizer import get_optimizer
from src.lr_scheduler import get_lr_scheduler
from src.trainer import Trainer
from src.utils import (
set_random_seeds,
get_device,
get_time,
save_json,
)
def parse_arguments() -> Namespace:
parser = ArgumentParser(description="Symbolic Music Generation")
# dataset setting
parser.add_argument(
"--data_folder",
type=str,
default="Pop1K7/midi_analyzed",
help="folder of dataset"
)
parser.add_argument(
"--max_seq_len",
type=int,
default=1024,
)
parser.add_argument(
"--tokenizer_name",
type=str,
default="remi",
choices=["remi", "remiplus", "midilike"],
)
parser.add_argument(
"--num_workers",
type=int,
default=4,
help="Number of workers for dataloader.",
)
# training setting
parser.add_argument(
"--model_name",
type=str,
default="gpt2",
choices=["gpt2", "EleutherAI/gpt-neo-125M"],
)
parser.add_argument(
"--epochs",
type=int,
default=100,
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
)
parser.add_argument(
"--optimizer",
type=str,
default="adamw",
choices=["sgd", "adam", "adamw"],
)
parser.add_argument(
"--lr",
type=float,
default=4e-4,
)
parser.add_argument(
"--weight_decay",
type=float,
default=1e-5,
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="one_cycle",
choices=["constant", "step", "one_cycle", "cosine_annealing"],
)
return parser.parse_args()
if __name__ == "__main__":
set_random_seeds()
args = parse_arguments()
checkpoint_dir = Path(CHECKPOINT_DIR, get_time())
os.makedirs(checkpoint_dir, exist_ok=True)
save_json(vars(args), Path(checkpoint_dir, CONFIG_FILE))
config = TokenizerConfig(
num_velocities=16,
use_chords=True,
use_programs=True,
use_tempos=True,
params=Path("tokenizers", f"{args.tokenizer_name}.json").stem
)
tokenizer = REMI(config)
tokenizer.save(Path(checkpoint_dir, "tokenizer.json"))
dataset = DatasetMIDI(
files_paths=list(Path(args.data_folder).glob("**/*.mid")),
tokenizer=tokenizer,
max_seq_len=args.max_seq_len,
bos_token_id=tokenizer["BOS_None"],
eos_token_id=tokenizer["EOS_None"],
)
collator = DataCollator(
tokenizer.pad_token_id,
copy_inputs_as_labels=True,
)
train_loader = DataLoader(
dataset,
batch_size=args.batch_size,
collate_fn=collator,
)
# Prepare model
model = AutoModelForCausalLM.from_pretrained(args.model_name)
device = get_device()
optimizer = get_optimizer(
name=args.optimizer,
model=model,
lr=args.lr,
weight_decay=args.weight_decay,
)
lr_scheduler = get_lr_scheduler(
name=args.lr_scheduler,
optimizer=optimizer,
max_lr=args.lr,
steps_for_one_epoch=len(train_loader),
epochs=args.epochs,
)
# Prepare logger
wandb.init(
project=PROJECT_NAME,
name=os.path.basename(checkpoint_dir),
config=vars(args),
)
wandb.watch(model, log="all")
trainer = Trainer(
model=model,
device=device,
train_loader=train_loader,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
accum_grad_step=1,
clip_grad_norm=1.0,
logger=wandb,
checkpoint_dir=checkpoint_dir,
)
trainer.fit(epochs=args.epochs)