|
| 1 | +# Copyright 2018 Jaewook Kang (jwkang10@gmail.com) |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# |
| 6 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 7 | +# |
| 8 | +# Unless required by applicable law or agreed to in writing, software |
| 9 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 10 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 11 | +# See the License for the specific language governing permissions and |
| 12 | +# limitations under the License. |
| 13 | +# =================================================================================== |
| 14 | +# -*- coding: utf-8 -*- |
| 15 | +from __future__ import absolute_import |
| 16 | +from __future__ import division |
| 17 | +from __future__ import print_function |
| 18 | + |
| 19 | + |
| 20 | +import numpy as np |
| 21 | +import six |
| 22 | +from datetime import datetime |
| 23 | +from os import getcwd |
| 24 | +import sys |
| 25 | +sys.path.insert(0,getcwd()) |
| 26 | +sys.path.insert(0,getcwd()+'/testcodes') |
| 27 | + |
| 28 | +import tensorflow as tf |
| 29 | +import tensorflow.contrib.slim as slim |
| 30 | +from test_util import create_test_input |
| 31 | + |
| 32 | +# module import |
| 33 | +from tf_deconv_module import get_nearest_neighbor_unpool2d_module |
| 34 | +from tf_deconv_module import get_transconv_unpool_module |
| 35 | + |
| 36 | + |
| 37 | +class ModuleEndpointName(object): |
| 38 | + |
| 39 | + def __init__(self,deconv_type,input_shape,output_shape,layer_index=0): |
| 40 | + |
| 41 | + input_shape = input_shape, |
| 42 | + output_shape = output_shape |
| 43 | + if deconv_type == 'conv2dtrans_unpool': |
| 44 | + self.name_list = ['unitest'+ str(layer_index) + '/conv2dtrans_unpool', 'conv2dtrans_unpool_out'] |
| 45 | + |
| 46 | + self.shape_dict = {self.name_list[0]:output_shape} |
| 47 | + |
| 48 | + |
| 49 | + |
| 50 | + |
| 51 | +class ModelTestConfig(object): |
| 52 | + |
| 53 | + def __init__(self): |
| 54 | + |
| 55 | + self.is_trainable = True |
| 56 | + self.unpool_weights_initializer = tf.contrib.layers.xavier_initializer() |
| 57 | + self.unpool_weights_regularizer = tf.contrib.layers.l2_regularizer(4E-5) |
| 58 | + self.unpool_biases_initializer = slim.init_ops.zeros_initializer() |
| 59 | + self.unpool_normalizer_fn = slim.batch_norm |
| 60 | + self.unpool_activation_fn = tf.nn.relu6 |
| 61 | + |
| 62 | + # batch_norm |
| 63 | + self.unpool_batch_norm_decay = 0.999 |
| 64 | + self.unpool_batch_norm_fused = True |
| 65 | + |
| 66 | + |
| 67 | + |
| 68 | +class ModuleTest(tf.test.TestCase): |
| 69 | + |
| 70 | + def _get_deconv_module(self,inputs, |
| 71 | + unpool_rate, |
| 72 | + module_type, |
| 73 | + layer_index=0, |
| 74 | + scope=None, |
| 75 | + model_config=None): |
| 76 | + |
| 77 | + scope = scope + str(layer_index) |
| 78 | + net = inputs |
| 79 | + |
| 80 | + with tf.name_scope(name=scope,default_name='test_module',values=[inputs]): |
| 81 | + |
| 82 | + if module_type == 'nearest_neighbor_unpool': |
| 83 | + net = get_nearest_neighbor_unpool2d_module(inputs=net, |
| 84 | + unpool_rate=unpool_rate, |
| 85 | + scope =scope) |
| 86 | + elif module_type == 'conv2dtrans_unpool': |
| 87 | + net = get_transconv_unpool_module(inputs=net, |
| 88 | + unpool_rate=unpool_rate, |
| 89 | + model_config=model_config, |
| 90 | + scope=scope) |
| 91 | + return net |
| 92 | + |
| 93 | + |
| 94 | + |
| 95 | + |
| 96 | + |
| 97 | + def test_nearest_neighbor_unpool(self): |
| 98 | + |
| 99 | + TEST_MODULE_NAME = 'nearest_neighbor_unpool' |
| 100 | + scope = 'unitest' |
| 101 | + |
| 102 | + input_width = 2 |
| 103 | + input_height = 2 |
| 104 | + input_shape = [1, input_height,input_width,1] |
| 105 | + |
| 106 | + |
| 107 | + x = tf.to_float([[0, 1], |
| 108 | + [2, 3]]) |
| 109 | + x = tf.reshape(x,shape=input_shape) |
| 110 | + |
| 111 | + |
| 112 | + y_unpool2_test1_expected = tf.to_float([[0,0,1,1], |
| 113 | + [0,0,1,1], |
| 114 | + [2,2,3,3], |
| 115 | + [2,2,3,3]]) |
| 116 | + |
| 117 | + y_unpool2_test1_expected = tf.reshape(y_unpool2_test1_expected, |
| 118 | + shape=[1,input_height*2,input_width*2,1]) |
| 119 | + |
| 120 | + y_unpool3_test1_expected = tf.to_float([[0, 0, 0, 1, 1, 1], |
| 121 | + [0, 0, 0, 1, 1, 1], |
| 122 | + [0, 0, 0, 1, 1, 1], |
| 123 | + [2, 2, 2, 3, 3, 3], |
| 124 | + [2, 2, 2, 3, 3, 3], |
| 125 | + [2, 2, 2, 3, 3, 3]]) |
| 126 | + |
| 127 | + y_unpool3_test1_expected = tf.reshape(y_unpool3_test1_expected, |
| 128 | + shape=[1,input_height*3,input_width*3,1]) |
| 129 | + |
| 130 | + y_unpool2_test1 = self._get_deconv_module(inputs=x, |
| 131 | + unpool_rate=2, |
| 132 | + module_type=TEST_MODULE_NAME, |
| 133 | + layer_index=0, |
| 134 | + scope=scope) |
| 135 | + |
| 136 | + y_unpool3_test1 = self._get_deconv_module(inputs=x, |
| 137 | + unpool_rate=3, |
| 138 | + module_type=TEST_MODULE_NAME, |
| 139 | + layer_index=1, |
| 140 | + scope=scope) |
| 141 | + |
| 142 | + with self.test_session() as sess: |
| 143 | + print('--------------------------------------------') |
| 144 | + print ('[tfTest] run test_nearest_neighbor_unpool()') |
| 145 | + sess.run(tf.global_variables_initializer()) |
| 146 | + self.assertAllClose(y_unpool2_test1.eval(),y_unpool2_test1_expected.eval()) |
| 147 | + self.assertAllClose(y_unpool3_test1.eval(),y_unpool3_test1_expected.eval()) |
| 148 | + |
| 149 | + # print ('[test1] Result of unpool rate2 = %s' % y_unpool2_test1.eval()) |
| 150 | + # print ('[test1] Expected of unpool rate2 = %s' % y_unpool2_test1_expected.eval()) |
| 151 | + # print ('[test1] Result of unpool rate3 = %s' % y_unpool3_test1.eval()) |
| 152 | + # print ('[test1] Expected of unpool rate3 = %s' % y_unpool3_test1_expected.eval()) |
| 153 | + |
| 154 | + print ('[test1] input shape of x = %s'% x.get_shape().as_list()) |
| 155 | + print ('[test1] output shape of y_unpool2 = %s' % y_unpool2_test1.get_shape().as_list()) |
| 156 | + print ('[test1] output shape of y_unpool3 = %s' % y_unpool3_test1.get_shape().as_list()) |
| 157 | + |
| 158 | + |
| 159 | + |
| 160 | + |
| 161 | + |
| 162 | + |
| 163 | + def test_transconv_unpool_name_shape(self): |
| 164 | + scope = 'unitest' |
| 165 | + |
| 166 | + model_config = ModelTestConfig() |
| 167 | + TEST_MODULE_NAME = 'conv2dtrans_unpool' |
| 168 | + |
| 169 | + with tf.name_scope(name=scope): |
| 170 | + input_width = 2 |
| 171 | + input_height = 2 |
| 172 | + input_shape = [None, input_height,input_width,1] |
| 173 | + unpool_rate = 3 |
| 174 | + |
| 175 | + expected_output_shape = [input_shape[0], |
| 176 | + input_shape[1]*unpool_rate, |
| 177 | + input_shape[2]*unpool_rate, |
| 178 | + input_shape[3]] |
| 179 | + |
| 180 | + inputs = create_test_input(batchsize= input_shape[0], |
| 181 | + heightsize=input_shape[1], |
| 182 | + widthsize =input_shape[2], |
| 183 | + channelnum= input_shape[3]) |
| 184 | + |
| 185 | + |
| 186 | + y_unpool2, midpoint= self._get_deconv_module(inputs=inputs, |
| 187 | + unpool_rate=unpool_rate, |
| 188 | + module_type=TEST_MODULE_NAME, |
| 189 | + model_config=model_config, |
| 190 | + scope=scope) |
| 191 | + |
| 192 | + expected_midpoint = ModuleEndpointName(deconv_type=TEST_MODULE_NAME, |
| 193 | + input_shape=input_shape, |
| 194 | + output_shape=expected_output_shape) |
| 195 | + |
| 196 | + |
| 197 | + print('------------------------------------------------') |
| 198 | + print('[tfTest] run test_transconv_unpool_name_shape()') |
| 199 | + print('[tfTest] midpoint name and shape') |
| 200 | + print('[tfTest] unpool rate = %s' % unpool_rate) |
| 201 | + |
| 202 | + self.assertItemsEqual(midpoint.keys(), expected_midpoint.name_list) |
| 203 | + |
| 204 | + for name, shape in six.iteritems(expected_midpoint.shape_dict): |
| 205 | + print ('%s : shape = %s' %(name,shape)) |
| 206 | + self.assertListEqual(midpoint[name].get_shape().as_list(),shape) |
| 207 | + |
| 208 | + |
| 209 | + |
| 210 | + |
| 211 | + def test_transconv_unknown_batchsize_shape(self): |
| 212 | + ''' |
| 213 | + this func check the below test case: |
| 214 | + - when a module is built without specifying batch_norm size, |
| 215 | + check whether the model output has a proper batch_size given by an input |
| 216 | + ''' |
| 217 | + scope = 'unitest' |
| 218 | + |
| 219 | + model_config = ModelTestConfig() |
| 220 | + TEST_MODULE_NAME = 'conv2dtrans_unpool' |
| 221 | + batch_size = 1 |
| 222 | + |
| 223 | + input_width = 2 |
| 224 | + input_height = 2 |
| 225 | + input_shape = [None, input_height,input_width,1] |
| 226 | + unpool_rate = 3 |
| 227 | + |
| 228 | + module_graph = tf.Graph() |
| 229 | + with module_graph.as_default(): |
| 230 | + inputs = create_test_input(batchsize= input_shape[0], |
| 231 | + heightsize=input_shape[1], |
| 232 | + widthsize =input_shape[2], |
| 233 | + channelnum= input_shape[3]) |
| 234 | + |
| 235 | + module_output, midpoint= self._get_deconv_module(inputs=inputs, |
| 236 | + unpool_rate=unpool_rate, |
| 237 | + module_type=TEST_MODULE_NAME, |
| 238 | + model_config=model_config, |
| 239 | + scope=scope) |
| 240 | + |
| 241 | + expected_prefix = scope |
| 242 | + self.assertTrue(module_output.op.name.startswith(expected_prefix)) |
| 243 | + self.assertListEqual(module_output.get_shape().as_list(), |
| 244 | + [None, |
| 245 | + input_shape[1] * unpool_rate, |
| 246 | + input_shape[2] * unpool_rate, |
| 247 | + input_shape[3]]) |
| 248 | + |
| 249 | + input_shape[0] = batch_size |
| 250 | + expected_output_shape = [input_shape[0], |
| 251 | + input_shape[1]*unpool_rate, |
| 252 | + input_shape[2]*unpool_rate, |
| 253 | + input_shape[3]] |
| 254 | + |
| 255 | + |
| 256 | + # which generate a sample image using np.arange() |
| 257 | + print('------------------------------------------------') |
| 258 | + print ('[tfTest] run test_transconv_unknown_batchsize_shape()') |
| 259 | + print('[tfTest] unpool rate = %s' % unpool_rate) |
| 260 | + |
| 261 | + images = create_test_input( batchsize=input_shape[0], |
| 262 | + heightsize=input_shape[1], |
| 263 | + widthsize=input_shape[2], |
| 264 | + channelnum=input_shape[3]) |
| 265 | + |
| 266 | + # tensorboard graph summary ============= |
| 267 | + now = datetime.utcnow().strftime("%Y%m%d%H%M%S") |
| 268 | + tb_logdir_path = getcwd() + '/tf_logs' |
| 269 | + tb_logdir = "{}/run-{}/".format(tb_logdir_path, now) |
| 270 | + |
| 271 | + if not tf.gfile.Exists(tb_logdir_path): |
| 272 | + tf.gfile.MakeDirs(tb_logdir_path) |
| 273 | + |
| 274 | + |
| 275 | + # summary |
| 276 | + tb_summary_writer = tf.summary.FileWriter(logdir=tb_logdir) |
| 277 | + tb_summary_writer.add_graph(module_graph) |
| 278 | + tb_summary_writer.close() |
| 279 | + |
| 280 | + |
| 281 | + # write pbfile of graph_def |
| 282 | + savedir = getcwd() + '/pbfiles' |
| 283 | + if not tf.gfile.Exists(savedir): |
| 284 | + tf.gfile.MakeDirs(savedir) |
| 285 | + |
| 286 | + pbfilename = TEST_MODULE_NAME + '.pb' |
| 287 | + pbtxtfilename = TEST_MODULE_NAME + '.pbtxt' |
| 288 | + |
| 289 | + with self.test_session(graph=module_graph) as sess: |
| 290 | + sess.run(tf.global_variables_initializer()) |
| 291 | + output = sess.run(module_output, {inputs: images.eval()}) |
| 292 | + self.assertListEqual(list(output.shape),expected_output_shape) |
| 293 | + print ('[TfTest] output shape = %s' % list(output.shape)) |
| 294 | + print ('[TfTest] expected_output_shape = %s' % expected_output_shape) |
| 295 | + |
| 296 | + print("TF graph_def is saved in pb at %s." % savedir + pbfilename) |
| 297 | + tf.train.write_graph(graph_or_graph_def=sess.graph_def, |
| 298 | + logdir=savedir, |
| 299 | + name=pbfilename) |
| 300 | + tf.train.write_graph(graph_or_graph_def=sess.graph_def, |
| 301 | + logdir=savedir, |
| 302 | + name=pbtxtfilename,as_text=True) |
| 303 | + |
| 304 | + |
| 305 | + |
| 306 | + |
| 307 | +if __name__ == '__main__': |
| 308 | + tf.test.main() |
| 309 | + |
| 310 | + |
0 commit comments