|
1 | | -mod bwd; |
2 | 1 | mod fwd; |
3 | 2 |
|
4 | | -use acyclib::{device::function, graph::ir::operation::sparse::SparseAffineImpl}; |
| 3 | +use acyclib::{ |
| 4 | + device::{function, operation::DiffableFromOutput}, |
| 5 | + graph::ir::operation::sparse::SparseAffineImpl, |
| 6 | +}; |
5 | 7 |
|
6 | | -use crate::{CudaDevice, kernel::Kernel}; |
| 8 | +use crate::{ |
| 9 | + CudaDevice, |
| 10 | + kernel::{Expr, Kernel, KernelArgs, KernelInput}, |
| 11 | +}; |
7 | 12 |
|
8 | 13 | impl SparseAffineImpl for CudaDevice { |
9 | 14 | type Bwd = Kernel; |
10 | 15 | type Fwd = Kernel; |
11 | 16 |
|
12 | | - fn bwd(op: function::BackpropSparseAffineActivate<Self>) -> Self::Bwd { |
13 | | - bwd::kernel(op) |
| 17 | + fn bwd(desc: function::BackpropSparseAffineActivate<Self>) -> Self::Bwd { |
| 18 | + const MAXIMUM_BLOCKS_Y: i32 = 32768; |
| 19 | + |
| 20 | + let output_shape = desc.weights_shape * desc.input_shape; |
| 21 | + let indices = desc.indices; |
| 22 | + |
| 23 | + assert_eq!(desc.weights_shape.size(), desc.weights_grads.shape().size()); |
| 24 | + assert_eq!(desc.input_shape.size(), indices.shape().size()); |
| 25 | + assert_eq!(desc.input_shape.cols(), 1); |
| 26 | + assert_eq!(output_shape.cols(), 1); |
| 27 | + |
| 28 | + let bias = desc.biases_grads.as_ref().map(|x| x.batch_size().is_some()); |
| 29 | + |
| 30 | + let batched = indices.batch_size().is_some(); |
| 31 | + let nnz = indices.sparse().nnz; |
| 32 | + let m = output_shape.rows(); |
| 33 | + |
| 34 | + let code = include_str!("sparse/bwd.cu") |
| 35 | + .lines() |
| 36 | + .skip(8) |
| 37 | + .map(|x| format!("{x}\n")) |
| 38 | + .collect::<String>() |
| 39 | + .replace( |
| 40 | + "INV_DERIV", |
| 41 | + match desc.activation { |
| 42 | + DiffableFromOutput::Identity => "1.0F", |
| 43 | + DiffableFromOutput::ReLU => "x > 0.0F ? 1.0F : 0.0F", |
| 44 | + DiffableFromOutput::CReLU => "x > 0.0F && x < 1.0F ? 1.0F : 0.0F", |
| 45 | + DiffableFromOutput::SCReLU => "x > 0.0F && x < 1.0F ? 2.0F * sqrtf(x) : 0.0F", |
| 46 | + DiffableFromOutput::SqrReLU => "x > 0.0F ? 2.0F * sqrtf(x) : 0.0F", |
| 47 | + DiffableFromOutput::Sigmoid => "x * (1.0F - x)", |
| 48 | + }, |
| 49 | + ) |
| 50 | + .replace("DECL_MAXY", &MAXIMUM_BLOCKS_Y.to_string()) |
| 51 | + .replace("DECL_M", &m.to_string()) |
| 52 | + .replace("DECL_NNZ", &nnz.to_string()) |
| 53 | + .replace("BIAS_ARG", if bias.is_some() { ",float* Bg" } else { "" }) |
| 54 | + .replace( |
| 55 | + "BIAS_BACKPROP", |
| 56 | + match bias { |
| 57 | + None => "", |
| 58 | + Some(true) => "if (tE != 0.0F) { atomicAdd(&Bg[m * loc + row], tE); }", |
| 59 | + Some(false) => "if (tE != 0.0F) { atomicAdd(&Bg[row], tE); }", |
| 60 | + }, |
| 61 | + ); |
| 62 | + |
| 63 | + let batch_size = Expr::Var; |
| 64 | + |
| 65 | + let mut inputs = vec![ |
| 66 | + KernelInput::Size(batch_size.clone()), |
| 67 | + KernelInput::Slice { slice: indices, layout: Some(nnz), mutable: false, batched, shape: desc.input_shape }, |
| 68 | + KernelInput::Slice { slice: desc.output, layout: None, mutable: false, batched, shape: output_shape }, |
| 69 | + KernelInput::Slice { slice: desc.output_grads, layout: None, mutable: false, batched, shape: output_shape }, |
| 70 | + KernelInput::Slice { |
| 71 | + slice: desc.weights_grads, |
| 72 | + layout: None, |
| 73 | + mutable: true, |
| 74 | + batched: false, |
| 75 | + shape: desc.weights_shape, |
| 76 | + }, |
| 77 | + ]; |
| 78 | + |
| 79 | + if let Some(bias) = desc.biases_grads { |
| 80 | + let batched = bias.batch_size().is_some(); |
| 81 | + let shape = bias.shape(); |
| 82 | + assert_eq!(shape.size(), output_shape.size()); |
| 83 | + |
| 84 | + inputs.push(KernelInput::Slice { slice: bias, layout: None, mutable: true, batched, shape: output_shape }); |
| 85 | + } |
| 86 | + |
| 87 | + let maxy = Expr::Const(MAXIMUM_BLOCKS_Y); |
| 88 | + let threads = m.min(1024); |
| 89 | + let chunks = m.div_ceil(threads); |
| 90 | + let ky = batch_size.min(&maxy); |
| 91 | + let kz = (batch_size + maxy.clone() - 1) / maxy; |
| 92 | + let grid_dim = [Expr::Const(chunks as i32), ky, kz]; |
| 93 | + let block_dim = [Expr::Const(threads as i32), Expr::Const(1), Expr::Const(1)]; |
| 94 | + |
| 95 | + let shared_mem_bytes = Expr::Const(0); |
| 96 | + |
| 97 | + let args = KernelArgs { inputs, grid_dim, block_dim, shared_mem_bytes }; |
| 98 | + |
| 99 | + unsafe { Kernel::new("SparseAffineActiveBackward".to_string(), code, args).unwrap() } |
14 | 100 | } |
15 | 101 |
|
16 | 102 | fn fwd(op: function::SparseAffineActivate<Self>) -> Self::Fwd { |
|
0 commit comments