forked from LebeerLab/tidytacos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotters.R
427 lines (381 loc) · 12.2 KB
/
plotters.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# Prepare tidytacos object for visualization by barplot.
#
# Clusters samples, adds color groups and relative abundances.
#
# @param ta a tidytacos object
# @param n an integer
#
prepare_for_bp <- function(ta, n = 12, extended = TRUE) {
# add sample_clustered if not present
if (!"sample_clustered" %in% names(ta$samples)) {
ta <- add_sample_clustered(ta)
}
# add taxon_name_color if not present
if (!"taxon_name_color" %in% names(ta$taxa)) {
ta <- add_taxon_name_color(ta, n = n)
}
# add relative abundances if not present
if (!"rel_abundance" %in% names(ta$counts)) {
ta <- add_rel_abundance(ta)
}
# optional extension (not used by sample bp)
if (extended) {
ta <- ta %>% everything()
}
ta
}
#' Return a bar plot of the samples
#'
#' Plots a stacked bar plot of the samples in the tidytacos object to inspect the taxonomic profile.
#'
#' @param ta A tidytacos object.
#' @param x A string, representing the column name used to label the x-axis
#' @param n An integer, representing the amount of colors used to depict
#' @param pie A boolean, whether or not to represent the profile in a pie chart.
#' Default is FALSE, as pie chart representations can be misleading to interpret.
#'
#' @export
tacoplot_stack <- function(ta, n = 12, x = sample_clustered, pie = FALSE) {
# convert promise to formula
x <- rlang::enquo(x)
warning_message_label = paste0("Label \'", rlang::quo_name(x),"\' not found in the samples table.")
warning_message_aggregate = "Sample labels not unique, samples are aggregated."
if (rlang::quo_name(x) != "sample_clustered" &&
!is.element(rlang::quo_name(x), names(ta$samples))
) {
# Warning, so tidy functions can be performed on the label
warning(warning_message_label)
}
if (quo_name(x) != "sample_clustered" &&
length(unique(ta$samples %>% pull(!!x))) < nrow(ta$samples)
) {
warning(warning_message_aggregate)
}
# make plot and return
plot <- prepare_for_bp(ta, n) %>%
ggplot(aes(
x = forcats::fct_reorder(!!x, as.integer(sample_clustered)),
y = rel_abundance, fill = taxon_name_color)) +
list(
geom_bar(stat = "identity"),
scale_fill_brewer(palette = "Paired", name = "Taxon"),
if (pie) coord_polar("y", start = 0, clip="off"),
xlab("sample"),
ylab("relative abundance"),
theme(
axis.text.x = element_text(angle = 90),
axis.ticks.x = element_blank(),
panel.background = element_rect(fill = "white", colour = "white")
),
if(pie) xlab(""),
if(pie) theme(axis.text.x = element_blank())
)
# Add > 12 colors if asked for
if (n > 12) {
force_optional_dependency("RColorBrewer")
suppressMessages(
plot <- plot +
scale_fill_manual(values = colorRampPalette(palette_xgfs)(n)))
}
plot
}
#' Return an interactive bar plot of the samples
#'
#' Plots an interactive stacked bar plot of the samples in the tidytacos object to inspect the taxonomic profile.
#'
#' @param ta A tidytacos object.
#' @param n An integer, representing the amount of colors used to depict
#' different taxa.
#' @param x A string, representing the column name used to label the x-axis
#'
#' @export
tacoplot_stack_ly <- function(ta, n = 12, x = sample_clustered) {
force_optional_dependency("plotly")
# convert promise to formula
x <- enquo(x)
# wrap in eval and quosure shenannigans
plot <- rlang::eval_tidy(rlang::quo_squash(
quo({
# make plot and return
prepare_for_bp(ta, n) %>%
plotly::plot_ly(
x = ~forcats::fct_reorder(!!x, as.integer(sample_clustered)),
y = ~rel_abundance,
color = ~taxon_name_color,
colors = palette_xgfs,
name = ~taxon_name_color,
hovertemplate = paste(
"<b>%{x}</b>",
"<br>%{y:.2%}<br>"
),
type = "bar"
) %>%
plotly::layout(
barmode = "stack",
xaxis = list(title="Sample"),
yaxis = list(title="Relative Abundance")
)
})
))
plot
}
#' Return an interactive ordination plot of the samples
#'
#' Creates an interactive ordination plot of the beta diversity of the samples in the tidytacos object.
#' This can be used to gauge the similarity between samples.
#'
#' @param ta A tidytacos object.
#' @param x A string, representing the column name used to color the sample
#' groups on.
#' @param samplenames the column in the sample table with the samplenames, defaults to sample_id.
#' @param ord the ordination technique to use. Choice from pcoa, tsne and umap.
#' @param distance the distance algorithm to use, see \code{\link[vegan]{vegdist}}.
#' @param dims the amount of dimensions to plot, 2 or 3.
#' @param stat.method the statistic to print on the figure, choice from mantel and anosim.
#' @param palette A vector of colors, used as the palette for coloring sample
#' @param title a string to display as title of the plot.
#' groups.
#'
#' @export
tacoplot_ord_ly <- function(ta, x=NULL, samplenames = sample_id, ord="pcoa", dims=2,
distance="bray", stat.method="mantel", palette = NULL, title = NULL, ...) {
force_optional_dependency("plotly")
if (is.null(title)){
title <- paste(ord, "plot")
}
# convert promise to formula
x <- rlang::enquo(x)
if (rlang::quo_is_null(x)) {
stop("Argument x missing. Please supply the name of a categorical value, to be used as the color for the pcoa plot.")
}
samplenames <- rlang::enquo(samplenames)
ordnames <- c("ord1", "ord2")
if (dims == 3) {
ordnames <- c(ordnames, "ord3")
}
# fallback to default palette
if (is.null(palette)) {
palette <- palette_paired
}
# Check for empty samples
if (length(unique(ta$counts$sample_id)) < length(unique(ta$samples$sample_id)))
{
warning("Empty samples detected, removing them from the analysis")
ta <- ta %>% remove_empty_samples()
}
# prepare ord if needed
if (!all(ordnames %in% names(ta$samples))) {
ta <- add_ord(ta, distance=distance, method=ord, dims=dims, ...)
}
# calculate statistic
if (stat.method == "anosim") {
stat <- perform_anosim(ta, !!x, distance=distance)
} else {
stat <- perform_mantel_test(ta, rlang::quo_name(x))
}
if (dims == 2) {
plot <- rlang::eval_tidy(rlang::quo_squash(
quo({
ta$samples %>%
plotly::plot_ly(
x = ~ord1,
y = ~ord2,
color = ~!!x,
colors = palette,
text = ~!!samplenames,
hovertemplate = paste("<i>%{text}</i>"),
type = "scatter",
mode = "markers"
) %>%
plotly::layout(
title = title,
yaxis = list(zeroline = F),
xaxis = list(zeroline = F)
)
})
))
} else {
plot <- rlang::eval_tidy(rlang::quo_squash(
quo({
ta$samples %>%
plotly::plot_ly(
x = ~ord1,
y = ~ord2,
z = ~ord3,
color = ~!!x,
colors = palette,
text = ~!!samplenames,
hovertemplate = paste("<i>%{text}</i>")
) %>% plotly::add_markers() %>%
plotly::layout(
title = title,
yaxis = list(zeroline = F),
xaxis = list(zeroline = F)
)
})
))
}
plot %>% plotly::add_annotations(
x= 0.1,
y= 1,
xref = "paper",
yref = "paper",
text = paste0(toupper(stat.method), ":\nR= ", signif(stat$statistic, 3), "\nP= ", signif(stat$signif, 3)),
showarrow = F
)
}
#' Return an ordination plot of the samples
#'
#' Creates an ordination plot of the beta diversity of the samples in the tidytacos object.
#' This can be used to gauge the similarity between samples.
#'
#' @param ta A tidytacos object.
#' @param x A string, representing the column name used to color the sample
#' groups on.
#' @param ord the ordination technique to use. Choice from pcoa, tsne and umap.
#' @param distance the distance algorithm to use, see \code{\link[vegan]{vegdist}}.
#' @param stat.method the statistic to print on the figure, choice from mantel and anosim.
#' @param palette A vector of colors, used as the palette for coloring sample
#' groups.
#'
#' @export
tacoplot_ord <- function(ta, x=sample_id, palette = NULL, ord = "pcoa", distance="bray", stat.method="mantel",title = NULL, ...) {
x <- enquo(x)
if (is.null(title)){
title <- paste(ord, "plot")
}
error_message = paste0("Label \'", quo_name(x),"\' not found in the samples table.")
if(!is.element(quo_name(x), names(ta$samples))) {
stop(error_message)
}
if (quo_name(x) == "sample_id") {
x <- NULL
}
# fallback to default palette
if (is.null(palette)) {
palette <- palette_paired
}
# Check for empty samples
if (length(unique(ta$counts$sample_id)) < length(unique(ta$samples$sample_id)))
{
warning("Empty samples detected, removing them from the analysis")
ta <- ta %>% remove_empty_samples()
}
# prepare pcoa if needed
if (!all(c("ord1", "ord2") %in% names(ta$samples))) {
ta <- add_ord(ta, distance=distance, method=ord, ...)
}
# calculate stats
if (stat.method == "anosim") {
stat <- perform_anosim(ta, !!x, distance=distance)
} else {
stat <- perform_mantel_test(ta, rlang::quo_name(x))
}
ta$samples %>% ggplot(aes(x=ord1, y=ord2, color=!!x)) +
geom_point() +
annotate("text", x=min(ta$samples$ord1)+0.05, y=max(ta$samples$ord2)-0.05,
label=paste0(toupper(stat.method),":\nR= ", signif(stat$statistic, 3), "\nP= ", signif(stat$signif, 3))) +
theme_classic() +
ggtitle(title)
}
#' Return a visualization designed for a small number of samples
#'
#' @param ta A tidytacos object.
#' @param sample A string, representing the unique sample name of interest
#'
#' @export
tacoplot_zoom <- function(ta, sample = sample_id, n = 15, nrow = NULL) {
ta <- prepare_for_bp(ta, n, extended = FALSE)
sample <- rlang::enexpr(sample)
if (sample != rlang::expr(sample_id)) {
ta <- change_id_samples(ta, sample_id_new = !!sample)
}
data <-
ta %>%
everything() %>%
group_by(sample_id) %>%
arrange(desc(rel_abundance)) %>%
slice(1:n) %>%
ungroup() %>%
arrange(sample_id, rel_abundance) %>%
mutate(row = 1:n())
data %>%
ggplot(aes(x = row, y = rel_abundance, fill = taxon_name_color)) +
geom_col() +
facet_wrap(~sample_id, scales = "free", nrow) +
coord_flip() +
theme_bw() +
scale_x_continuous(
breaks = data$row,
labels = data$taxon_name,
expand = c(0, 0)
) +
scale_fill_brewer(palette = "Paired", name = "taxon") +
xlab("taxon name") +
ylab("relative abundance")
}
#' Return a venn diagram of overlapping taxon_ids between conditions
#'
#' @param ta A tidytacos object.
#' @param condition The name of a variable in the samples table that contains a
#' categorical value.
#'
#' @export
tacoplot_venn <- function(ta, condition, ...) {
force_optional_dependency("ggVennDiagram")
condition <- enquo(condition)
ltpc <- taxonlist_per_condition(ta, !!condition)
if ("show_intersect" %in% names(list(...))) {
match_taxon_name <- function(taxid) {
ta$taxa[which(ta$taxa$taxon_id %in% taxid),] %>%
dplyr::pull(taxon_name)
}
ltpc <- lapply(ltpc, match_taxon_name)
}
ggVennDiagram::ggVennDiagram(ltpc, ...)
}
#' Return an interactive venn diagram of overlapping taxon_ids between conditions
#'
#' @param ta A tidytacos object.
#' @param condition The name of a variable in the samples table that contains a
#' categorical value.
#'
#' @export
tacoplot_venn_ly <- function(ta, condition, ...) {
condition <- enquo(condition)
if (!"taxon_name" %in% names(ta$taxa)){
ta <- ta %>% add_taxon_name()
}
ta %>% tacoplot_venn(!!condition, show_intersect=TRUE, ...)
}
palette_paired <- c(
"#e8e8e8", # light grey
"#a6cee3", # light blue
"#1f78b4", # dark blue
"#b2df8a", # light green
"#33a02c", # dark green
"#fb9a99", # light red
"#e31a1c", # dark red
"#fdbf6f", # light orange
"#ff7f00", # dark orange
"#cab2d6", # light purple
"#6a3d9a", # dark purple
"#ffff99", # light brown
"#b15928" # dark brown
)
palette_xgfs <- c(
# source: http://tsitsul.in/blog/coloropt/
"#bdbdbd",
"#00a76c",
"#878500",
"#00c6f8",
"#5954d6",
"#ff9287",
"#b24502",
"#d163e6",
"#00bbad",
"#006e00",
"#008cf9",
"#b80058",
"#ebac23"
)