forked from SGEthan/NeurIPS2022_Paper_Retrieving
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_analyze.py
277 lines (222 loc) · 12.2 KB
/
data_analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import json
import matplotlib.pyplot as plt
import sys
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
def search_affiliation(papers, name):
count = 0
for paper in papers:
for author in paper['authors']:
if name in author['affiliation']:
print(f"{bcolors.WARNING}{count+1:<4}{paper['title']}{bcolors.ENDC}")
for author1 in paper['authors']:
if name in author1['affiliation']:
line = f' {bcolors.OKGREEN}{author1["name"]:<20}{bcolors.ENDC} {bcolors.FAIL}{author1["affiliation"]:<12}{bcolors.ENDC}'
else:
line = f' {author1["name"]:<20} {author1["affiliation"]:<12}'
print(line)
print("\n")
count += 1
break
def count_affiliation(papers):
# count different affiliations
affiliations = {}
for paper in papers:
for author in paper['authors']:
if author['affiliation'] not in affiliations:
affiliations[author['affiliation']] = 0
affiliations[author['affiliation']] += 1
# merge affiliations containing stanford:
for affiliation in affiliations:
if 'stanford' in affiliation.lower() and affiliation != 'Stanford University':
affiliations['Stanford University'] += affiliations[affiliation]
# merge affiliations containing google:
for affiliation in affiliations:
if 'google' in affiliation.lower() and affiliation != 'Google':
affiliations['Google'] += affiliations[affiliation]
# merge affiliations containing pku:
for affiliation in affiliations:
if 'peking' in affiliation.lower() and affiliation != 'Peking University':
affiliations['Peking University'] += affiliations[affiliation]
# merge affiliations containing thu:
for affiliation in affiliations:
if 'tsinghua' in affiliation.lower() and affiliation != 'Tsinghua University':
affiliations['Tsinghua University'] += affiliations[affiliation]
# merge affiliations containing cmu:
for affiliation in affiliations:
if ('cmu' in affiliation.lower() or 'carnegie mellon University' in affiliation.lower()) and affiliation != 'Carnegie Mellon University':
affiliations['Carnegie Mellon University'] += affiliations[affiliation]
# merge affiliations containing oxford:
for affiliation in affiliations:
if 'oxford' in affiliation.lower() and affiliation != 'University of Oxford':
affiliations['University of Oxford'] += affiliations[affiliation]
# merge affiliations containing MIT:
for affiliation in affiliations:
if 'MIT' in affiliation and affiliation != 'Massachusetts Institute of Technology':
affiliations['Massachusetts Institute of Technology'] += affiliations[affiliation]
# merge affiliations containing Deepmind:
for affiliation in affiliations:
if 'deepmind' in affiliation.lower() and affiliation != 'DeepMind':
affiliations['DeepMind'] += affiliations[affiliation]
# merge affiliations containing ZJU:
for affiliation in affiliations:
if 'zhejiang university' in affiliation.lower() and affiliation != 'Zhejiang University':
affiliations['Zhejiang University'] += affiliations[affiliation]
# merge affiliations containing Microsoft:
for affiliation in affiliations:
if 'microsoft' in affiliation.lower() and affiliation != 'Microsoft':
affiliations['Microsoft'] += affiliations[affiliation]
# merge affiliations containing Shanghai Jiao Tong University:
for affiliation in affiliations:
if ('shanghai jiao tong university' in affiliation.lower() or 'shanghai jiaotong university' in affiliation.lower()) and affiliation != 'Shanghai Jiao Tong University':
affiliations['Shanghai Jiao Tong University'] += affiliations[affiliation]
affiliations['Shanghai Jiao Tong University'] += 2
# merge affiliations containing princeton:
for affiliation in affiliations:
if 'princeton' in affiliation.lower() and affiliation != 'Princeton University':
affiliations['Princeton University'] += affiliations[affiliation]
# merge affiliations containing ustc:
for affiliation in affiliations:
if ('university of science and technology of china' in affiliation.lower() or 'ustc' in affiliation.lower()) and affiliation != 'University of Science and Technology of China':
affiliations['University of Science and Technology of China'] += affiliations[affiliation]
affiliations['University of Science and Technology of China'] -= 3
# merge affiliations containing nus:
for affiliation in affiliations:
if 'national university of singapore' in affiliation.lower() and affiliation != 'National University of Singapore':
affiliations['National University of Singapore'] += affiliations[affiliation]
# merge affiliations containing berkeley:
for affiliation in affiliations:
if 'berkeley' in affiliation.lower() and affiliation != 'University of California, Berkeley':
affiliations['University of California, Berkeley'] += affiliations[affiliation]
affiliations['Nanjing University'] += 5
affiliations['Columbia University'] += 1
del affiliations['None']
# del all the affiliations merged above
# sort the affiliations by count
affiliations = sorted(affiliations.items(), key=lambda x: x[1], reverse=True)
# write all affiliations into file
with open('affiliations.txt', 'w') as f:
for affiliation in affiliations:
f.write(f'{affiliation[0]}: {affiliation[1]}\n')
def affiliation_plot(affiliations, fig_name):
affiliations = affiliations[:30]
affiliations = list(zip(*affiliations))
affiliations[0] = list(affiliations[0])
affiliations[1] = list(affiliations[1])
affiliations[0].reverse()
affiliations[1].reverse()
affiliations[0] = [affiliation.replace('University', 'Univ.') for affiliation in affiliations[0]]
affiliations[0] = [affiliation.replace('Institute', 'Inst.') for affiliation in affiliations[0]]
affiliations[0] = [affiliation.replace('of', '') for affiliation in affiliations[0]]
affiliations[0] = [affiliation.replace('and', '&') for affiliation in affiliations[0]]
affiliations[0] = [affiliation.replace('Science', 'Sci.') for affiliation in affiliations[0]]
affiliations[0] = [affiliation.replace('Technology', 'Tech.') for affiliation in affiliations[0]]
affiliations[0] = [affiliation.replace('California', 'Calif.') for affiliation in affiliations[0]]
affiliations[0] = [affiliation.replace('Massachusetts', 'Mass.') for affiliation in affiliations[0]]
plt.figure(figsize=(20, 8), dpi=80)
plt.barh(range(30), affiliations[1], height=0.8)
plt.yticks(range(30), affiliations[0])
plt.grid(alpha=0.4)
plt.savefig(fig_name)
plt.show()
def count_first_affiliations(papers):
# count different affiliations
affiliations = {}
for paper in papers:
author = paper['authors'][0]
if author['affiliation'] not in affiliations:
affiliations[author['affiliation']] = 0
affiliations[author['affiliation']] += 1
# merge affiliations containing stanford:
for affiliation in affiliations:
if 'stanford' in affiliation.lower() and affiliation != 'Stanford University':
affiliations['Stanford University'] += affiliations[affiliation]
# merge affiliations containing google:
for affiliation in affiliations:
if 'google' in affiliation.lower() and affiliation != 'Google':
affiliations['Google'] += affiliations[affiliation]
# merge affiliations containing pku:
for affiliation in affiliations:
if 'peking' in affiliation.lower() and affiliation != 'Peking University':
affiliations['Peking University'] += affiliations[affiliation]
# merge affiliations containing thu:
for affiliation in affiliations:
if 'tsinghua' in affiliation.lower() and affiliation != 'Tsinghua University':
affiliations['Tsinghua University'] += affiliations[affiliation]
# merge affiliations containing cmu:
for affiliation in affiliations:
if ('cmu' in affiliation.lower() or 'carnegie mellon University' in affiliation.lower()) and affiliation != 'Carnegie Mellon University':
affiliations['Carnegie Mellon University'] += affiliations[affiliation]
# merge affiliations containing oxford:
for affiliation in affiliations:
if 'oxford' in affiliation.lower() and affiliation != 'University of Oxford':
affiliations['University of Oxford'] += affiliations[affiliation]
# merge affiliations containing MIT:
for affiliation in affiliations:
if 'MIT' in affiliation and affiliation != 'Massachusetts Institute of Technology':
affiliations['Massachusetts Institute of Technology'] += affiliations[affiliation]
# merge affiliations containing Deepmind:
for affiliation in affiliations:
if 'deepmind' in affiliation.lower() and affiliation != 'DeepMind':
affiliations['DeepMind'] += affiliations[affiliation]
# merge affiliations containing ZJU:
for affiliation in affiliations:
if 'zhejiang university' in affiliation.lower() and affiliation != 'Zhejiang University':
affiliations['Zhejiang University'] += affiliations[affiliation]
# merge affiliations containing Microsoft:
for affiliation in affiliations:
if 'microsoft' in affiliation.lower() and affiliation != 'Microsoft':
affiliations['Microsoft'] += affiliations[affiliation]
# merge affiliations containing Shanghai Jiao Tong University:
for affiliation in affiliations:
if ('shanghai jiao tong university' in affiliation.lower() or 'shanghai jiaotong university' in affiliation.lower()) and affiliation != 'Shanghai Jiao Tong University':
affiliations['Shanghai Jiao Tong University'] += affiliations[affiliation]
# merge affiliations containing princeton:
for affiliation in affiliations:
if 'princeton' in affiliation.lower() and affiliation != 'Princeton University':
affiliations['Princeton University'] += affiliations[affiliation]
# merge affiliations containing ustc:
for affiliation in affiliations:
if ('university of science and technology of china' in affiliation.lower() or 'ustc' in affiliation.lower()) and affiliation != 'University of Science and Technology of China':
affiliations['University of Science and Technology of China'] += affiliations[affiliation]
# merge affiliations containing nus:
for affiliation in affiliations:
if 'national university of singapore' in affiliation.lower() and affiliation != 'National University of Singapore':
affiliations['National University of Singapore'] += affiliations[affiliation]
# merge affiliations containing berkeley:
for affiliation in affiliations:
if 'berkeley' in affiliation.lower() and affiliation != 'University of California, Berkeley':
affiliations['University of California, Berkeley'] += affiliations[affiliation]
del affiliations['MIT']
del affiliations['Tsinghua University, Tsinghua University']
del affiliations['None']
# sort the affiliations by count
affiliations = sorted(affiliations.items(), key=lambda x: x[1], reverse=True)
# write all affiliations into file
with open('firsts_affiliations.txt', 'w') as f:
for affiliation in affiliations:
f.write(f'{affiliation[0]}: {affiliation[1]}\n')
affiliation_plot(affiliations, 'first_affiliations.png')
def main():
papers = []
with open('nips2022.json', 'r') as f:
# read line by line and process
for line in f:
paper = json.loads(line)
# do something with paper
papers.append(paper)
search_affiliation(papers, sys.argv[1])
# print(len(papers))
# count_affiliation(papers)
# count_first_affiliations(papers)
# print('done')
if __name__ == '__main__':
main()