forked from triton-inference-server/client
-
Notifications
You must be signed in to change notification settings - Fork 0
/
common.h
627 lines (542 loc) · 24.1 KB
/
common.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
// Copyright 2020-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
/// \file
#include <algorithm>
#include <chrono>
#include <condition_variable>
#include <cstring>
#include <functional>
#include <iostream>
#include <list>
#include <memory>
#include <mutex>
#include <string>
#include <thread>
#include <vector>
#ifdef TRITON_INFERENCE_SERVER_CLIENT_CLASS
namespace triton { namespace perfanalyzer { namespace clientbackend {
namespace tritoncapi {
class TritonLoader;
}}}} // namespace triton::perfanalyzer::clientbackend::tritoncapi
#endif
namespace triton { namespace client {
constexpr char kInferHeaderContentLengthHTTPHeader[] =
"Inference-Header-Content-Length";
constexpr int MAX_GRPC_MESSAGE_SIZE = INT32_MAX;
class InferResult;
class InferRequest;
class RequestTimers;
//==============================================================================
/// Error status reported by client API.
///
class Error {
public:
/// Create an error with the specified message.
/// \param msg The message for the error
explicit Error(const std::string& msg = "");
/// Accessor for the message of this error.
/// \return The messsage for the error. Empty if no error.
const std::string& Message() const { return msg_; }
/// Does this error indicate OK status?
/// \return True if this error indicates "ok"/"success", false if
/// error indicates a failure.
bool IsOk() const { return msg_.empty(); }
/// Convenience "success" value. Can be used as Error::Success to
/// indicate no error.
static const Error Success;
private:
friend std::ostream& operator<<(std::ostream&, const Error&);
std::string msg_;
};
//==============================================================================
/// Cumulative inference statistics.
///
/// \note
/// For GRPC protocol, 'cumulative_send_time_ns' represents the
/// time for marshaling infer request.
/// 'cumulative_receive_time_ns' represents the time for
/// unmarshaling infer response.
struct InferStat {
/// Total number of requests completed.
size_t completed_request_count;
/// Time from the request start until the response is completely
/// received.
uint64_t cumulative_total_request_time_ns;
/// Time from the request start until the last byte is sent.
uint64_t cumulative_send_time_ns;
/// Time from receiving first byte of the response until the
/// response is completely received.
uint64_t cumulative_receive_time_ns;
/// Create a new InferStat object with zero-ed statistics.
InferStat()
: completed_request_count(0), cumulative_total_request_time_ns(0),
cumulative_send_time_ns(0), cumulative_receive_time_ns(0)
{
}
};
//==============================================================================
/// The base class for InferenceServerClients
///
class InferenceServerClient {
public:
using OnCompleteFn = std::function<void(InferResult*)>;
using OnMultiCompleteFn = std::function<void(std::vector<InferResult*>)>;
explicit InferenceServerClient(bool verbose)
: verbose_(verbose), exiting_(false)
{
}
virtual ~InferenceServerClient() = default;
/// Obtain the cumulative inference statistics of the client.
/// \param Returns the InferStat object holding current statistics.
/// \return Error object indicating success or failure.
Error ClientInferStat(InferStat* infer_stat) const;
protected:
// Update the infer stat with the given timer
Error UpdateInferStat(const RequestTimers& timer);
// Enables verbose operation in the client.
bool verbose_;
// worker thread that will perform the asynchronous transfer
std::thread worker_;
// Avoid race condition between main thread and worker thread
std::mutex mutex_;
// Condition variable used for waiting on asynchronous request
std::condition_variable cv_;
// signal for worker thread to stop
bool exiting_;
// The inference statistic of the current client
InferStat infer_stat_;
};
//==============================================================================
/// Structure to hold options for Inference Request.
///
struct InferOptions {
explicit InferOptions(const std::string& model_name)
: model_name_(model_name), model_version_(""), request_id_(""),
sequence_id_(0), sequence_id_str_(""), sequence_start_(false),
sequence_end_(false), priority_(0), server_timeout_(0),
client_timeout_(0)
{
}
/// The name of the model to run inference.
std::string model_name_;
/// The version of the model to use while running inference. The default
/// value is an empty string which means the server will select the
/// version of the model based on its internal policy.
std::string model_version_;
/// An identifier for the request. If specified will be returned
/// in the response. Default value is an empty string which means no
/// request_id will be used.
std::string request_id_;
/// The unique identifier for the sequence being represented by the
/// object. Default value is 0 which means that the request does not
/// belong to a sequence. If this value is non-zero, then sequence_id_str_
/// MUST be set to "".
uint64_t sequence_id_;
/// The unique identifier for the sequence being represented by the
/// object. Default value is "" which means that the request does not
/// belong to a sequence. If this value is non-empty, then sequence_id_
/// MUST be set to 0.
std::string sequence_id_str_;
/// Indicates whether the request being added marks the start of the
/// sequence. Default value is False. This argument is ignored if
/// 'sequence_id' is 0.
bool sequence_start_;
/// Indicates whether the request being added marks the end of the
/// sequence. Default value is False. This argument is ignored if
/// 'sequence_id' is 0.
bool sequence_end_;
/// Indicates the priority of the request. Priority value zero
/// indicates that the default priority level should be used
/// (i.e. same behavior as not specifying the priority parameter).
/// Lower value priorities indicate higher priority levels. Thus
/// the highest priority level is indicated by setting the parameter
/// to 1, the next highest is 2, etc. If not provided, the server
/// will handle the request using default setting for the model.
uint64_t priority_;
/// The timeout value for the request, in microseconds. If the request
/// cannot be completed within the time by the server can take a
/// model-specific action such as terminating the request. If not
/// provided, the server will handle the request using default setting
/// for the model.
uint64_t server_timeout_;
// The maximum end-to-end time, in microseconds, the request is allowed
// to take. Note the HTTP library only offer the precision upto
// milliseconds. The client will abort request when the specified time
// elapses. The request will return error with message "Deadline Exceeded".
// The default value is 0 which means client will wait for the
// response from the server. This option is not supported for streaming
// requests. Instead see 'stream_timeout' argument in
// InferenceServerGrpcClient::StartStream().
uint64_t client_timeout_;
};
//==============================================================================
/// An interface for InferInput object to describe the model input for
/// inference.
///
class InferInput {
public:
/// Create a InferInput instance that describes a model input.
/// \param infer_input Returns a new InferInput object.
/// \param name The name of input whose data will be described by this object.
/// \param dims The shape of the input.
/// \param datatype The datatype of the input.
/// \return Error object indicating success or failure.
static Error Create(
InferInput** infer_input, const std::string& name,
const std::vector<int64_t>& dims, const std::string& datatype);
/// Gets name of the associated input tensor.
/// \return The name of the tensor.
const std::string& Name() const { return name_; }
/// Gets datatype of the associated input tensor.
/// \return The datatype of the tensor.
const std::string& Datatype() const { return datatype_; }
/// Gets the shape of the input tensor.
/// \return The shape of the tensor.
const std::vector<int64_t>& Shape() const { return shape_; }
/// Set the shape of input associated with this object.
/// \param dims the vector of dims representing the new shape
/// of input.
/// \return Error object indicating success or failure of the
/// request.
Error SetShape(const std::vector<int64_t>& dims);
/// Prepare this input to receive new tensor values. Forget any
/// existing values that were set by previous calls to SetSharedMemory()
/// or AppendRaw().
/// \return Error object indicating success or failure.
Error Reset();
/// Append tensor values for this input from a byte vector. The vector
/// is not copied and so it must not be modified or destroyed
/// until this input is no longer needed (that is until the Infer()
/// call(s) that use the input have completed). Multiple calls can
/// be made to this API to keep adding tensor data for this input.
/// The data will be delivered in the order it was added.
/// \param input The vector holding tensor values.
/// \return Error object indicating success or failure.
Error AppendRaw(const std::vector<uint8_t>& input);
/// Append tensor values for this input from a byte array. The array
/// is not copied and so it must not be modified or destroyed
/// until this input is no longer needed (that is until the Infer()
/// call(s) that use the input have completed). Multiple calls can
/// be made to this API to keep adding tensor data for this input.
/// The data will be delivered in the order it was added.
/// \param input The pointer to the array holding the tensor value.
/// \param input_byte_size The size of the array in bytes.
/// \return Error object indicating success or failure.
Error AppendRaw(const uint8_t* input, size_t input_byte_size);
/// Set tensor values for this input by reference into a shared memory
/// region. The values are not copied and so the shared memory region and
/// its contents must not be modified or destroyed until this input is no
/// longer needed (that is until the Infer() call(s) that use the input have
/// completed. This function must be called a single time for an input that
/// is using shared memory. The entire tensor data required by this input
/// must be contiguous in a single shared memory region.
/// \param name The user-given name for the registered shared memory region
/// where the tensor values for this input is stored.
/// \param byte_size The size, in bytes of the input tensor data. Must
/// match the size expected for the input shape.
/// \param offset The offset into the shared memory region upto the start
/// of the input tensor values. The default value is 0.
/// \return Error object indicating success or failure
Error SetSharedMemory(
const std::string& name, size_t byte_size, size_t offset = 0);
/// \return true if this input is being provided in shared memory.
bool IsSharedMemory() const { return (io_type_ == SHARED_MEMORY); }
/// Get information about the shared memory being used for this
/// input.
/// \param name Returns the name of the shared memory region.
/// \param byte_size Returns the size, in bytes, of the shared
/// memory region.
/// \param offset Returns the offset within the shared memory
/// region.
/// \return Error object indicating success or failure.
Error SharedMemoryInfo(
std::string* name, size_t* byte_size, size_t* offset) const;
/// Append tensor values for this input from a vector or
/// strings. This method can only be used for tensors with BYTES
/// data-type. The strings are assigned in row-major order to the
/// elements of the tensor. The strings are copied and so the
/// 'input' does not need to be preserved as with AppendRaw(). Multiple
/// calls can be made to this API to keep adding tensor data for
/// this input. The data will be delivered in the order it was added.
/// \param input The vector holding tensor string values.
/// \return Error object indicating success or failure.
Error AppendFromString(const std::vector<std::string>& input);
/// Gets the size of data added into this input in bytes.
/// \param byte_size The size of data added in bytes.
/// \return Error object indicating success or failure.
Error ByteSize(size_t* byte_size) const;
private:
#ifdef TRITON_INFERENCE_SERVER_CLIENT_CLASS
friend class TRITON_INFERENCE_SERVER_CLIENT_CLASS;
#endif
InferInput(
const std::string& name, const std::vector<int64_t>& dims,
const std::string& datatype);
Error PrepareForRequest();
Error GetNext(
uint8_t* buf, size_t size, size_t* input_bytes, bool* end_of_input);
Error GetNext(const uint8_t** buf, size_t* input_bytes, bool* end_of_input);
std::string name_;
std::vector<int64_t> shape_;
std::string datatype_;
size_t byte_size_;
size_t bufs_idx_, buf_pos_;
std::vector<const uint8_t*> bufs_;
std::vector<size_t> buf_byte_sizes_;
// Used only for STRING type tensors set with SetFromString(). Hold
// the "raw" serialization of the string values for each index
// that are then referenced by 'bufs_'. A std::list is used to avoid
// reallocs that could invalidate the pointer references into the
// std::string objects.
std::list<std::string> str_bufs_;
// Used only if working with Shared Memory
enum IOType { NONE, RAW, SHARED_MEMORY };
IOType io_type_;
std::string shm_name_;
size_t shm_offset_;
};
//==============================================================================
/// An InferRequestedOutput object is used to describe the requested model
/// output for inference.
///
class InferRequestedOutput {
public:
/// Create a InferRequestedOutput instance that describes a model output being
/// requested.
/// \param infer_output Returns a new InferOutputGrpc object.
/// \param name The name of output being requested.
/// \param class_count The number of classifications to be requested. The
/// default value is 0 which means the classification results are not
/// requested.
/// \return Error object indicating success or failure.
static Error Create(
InferRequestedOutput** infer_output, const std::string& name,
const size_t class_count = 0);
/// Gets name of the associated output tensor.
/// \return The name of the tensor.
const std::string& Name() const { return name_; }
/// Get the number of classifications requested for this output, or
/// 0 if the output is not being returned as classifications.
size_t ClassificationCount() const { return class_count_; }
/// Set the output tensor data to be written to specified shared
/// memory region.
/// \param region_name The name of the shared memory region.
/// \param byte_size The size of data in bytes.
/// \param offset The offset in shared memory region. Default value is 0.
/// \return Error object indicating success or failure of the
/// request.
Error SetSharedMemory(
const std::string& region_name, const size_t byte_size,
const size_t offset = 0);
/// Clears the shared memory option set by the last call to
/// InferRequestedOutput::SetSharedMemory(). After call to this
/// function requested output will no longer be returned in a
/// shared memory region.
/// \return Error object indicating success or failure of the
/// request.
Error UnsetSharedMemory();
/// \return true if this output is being returned in shared memory.
bool IsSharedMemory() const { return (io_type_ == SHARED_MEMORY); }
/// Get information about the shared memory being used for this
/// output.
/// \param name Returns the name of the shared memory region.
/// \param byte_size Returns the size, in bytes, of the shared
/// memory region.
/// \param offset Returns the offset within the shared memory
/// region.
/// \return Error object indicating success or failure.
Error SharedMemoryInfo(
std::string* name, size_t* byte_size, size_t* offset) const;
private:
#ifdef TRITON_INFERENCE_SERVER_CLIENT_CLASS
friend class TRITON_INFERENCE_SERVER_CLIENT_CLASS;
#endif
explicit InferRequestedOutput(
const std::string& name, const size_t class_count = 0);
std::string name_;
size_t class_count_;
// Used only if working with Shared Memory
enum IOType { NONE, RAW, SHARED_MEMORY };
IOType io_type_;
std::string shm_name_;
size_t shm_byte_size_;
size_t shm_offset_;
};
//==============================================================================
/// An interface for InferResult object to interpret the response to an
/// inference request.
///
class InferResult {
public:
virtual ~InferResult() = default;
/// Get the name of the model which generated this response.
/// \param name Returns the name of the model.
/// \return Error object indicating success or failure.
virtual Error ModelName(std::string* name) const = 0;
/// Get the version of the model which generated this response.
/// \param version Returns the version of the model.
/// \return Error object indicating success or failure.
virtual Error ModelVersion(std::string* version) const = 0;
/// Get the id of the request which generated this response.
/// \param version Returns the version of the model.
/// \return Error object indicating success or failure.
virtual Error Id(std::string* id) const = 0;
/// Get the shape of output result returned in the response.
/// \param output_name The name of the ouput to get shape.
/// \param shape Returns the shape of result for specified output name.
/// \return Error object indicating success or failure.
virtual Error Shape(
const std::string& output_name, std::vector<int64_t>* shape) const = 0;
/// Get the datatype of output result returned in the response.
/// \param output_name The name of the ouput to get datatype.
/// \param shape Returns the datatype of result for specified output name.
/// \return Error object indicating success or failure.
virtual Error Datatype(
const std::string& output_name, std::string* datatype) const = 0;
/// Get access to the buffer holding raw results of specified output
/// returned by the server. Note the buffer is owned by InferResult
/// instance. Users can copy out the data if required to extend the
/// lifetime.
/// \param output_name The name of the output to get result data.
/// \param buf Returns the pointer to the start of the buffer.
/// \param byte_size Returns the size of buffer in bytes.
/// \return Error object indicating success or failure of the
/// request.
virtual Error RawData(
const std::string& output_name, const uint8_t** buf,
size_t* byte_size) const = 0;
/// Get the result data as a vector of strings. The vector will
/// receive a copy of result data. An error will be generated if
/// the datatype of output is not 'BYTES'.
/// \param output_name The name of the output to get result data.
/// \param string_result Returns the result data represented as
/// a vector of strings. The strings are stored in the
/// row-major order.
/// \return Error object indicating success or failure of the
/// request.
virtual Error StringData(
const std::string& output_name,
std::vector<std::string>* string_result) const = 0;
/// Returns the complete response as a user friendly string.
/// \return The string describing the complete response.
virtual std::string DebugString() const = 0;
/// Returns the status of the request.
/// \return Error object indicating the success or failure of the
/// request.
virtual Error RequestStatus() const = 0;
};
//==============================================================================
/// Records timestamps for different stages of request handling.
///
class RequestTimers {
public:
/// Timestamp kinds.
enum class Kind {
/// The start of request handling.
REQUEST_START,
/// The end of request handling.
REQUEST_END,
/// The start of sending request bytes to the server (i.e. first
/// byte).
SEND_START,
/// The end of sending request bytes to the server (i.e. last
/// byte).
SEND_END,
/// The start of receiving response bytes from the server
/// (i.e. first byte).
RECV_START,
/// The end of receiving response bytes from the server (i.e. last
/// byte).
RECV_END,
COUNT__
};
/// Construct a timer with zero-ed timestamps.
RequestTimers() : timestamps_((size_t)Kind::COUNT__) { Reset(); }
/// Reset all timestamp values to zero. Must be called before
/// re-using the timer.
void Reset()
{
memset(×tamps_[0], 0, sizeof(uint64_t) * timestamps_.size());
}
/// Get the timestamp, in nanoseconds, for a kind.
/// \param kind The timestamp kind.
/// \return The timestamp in nanoseconds.
uint64_t Timestamp(Kind kind) const { return timestamps_[(size_t)kind]; }
/// Set a timestamp to the current time, in nanoseconds.
/// \param kind The timestamp kind.
/// \return The timestamp in nanoseconds.
uint64_t CaptureTimestamp(Kind kind)
{
uint64_t& ts = timestamps_[(size_t)kind];
ts = std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::high_resolution_clock::now().time_since_epoch())
.count();
return ts;
}
/// Return the duration between start time point and end timepoint
/// in nanosecond.
/// \param start The start time point.
/// \param end The end time point.
/// \return Duration in nanosecond, or
/// std::numeric_limits<uint64_t>::max to indicate that duration
/// could not be calculated.
uint64_t Duration(Kind start, Kind end) const
{
const uint64_t stime = timestamps_[(size_t)start];
const uint64_t etime = timestamps_[(size_t)end];
// If the start or end timestamp is 0 then can't calculate the
// duration, so return max to indicate error.
if ((stime == 0) || (etime == 0)) {
return (std::numeric_limits<uint64_t>::max)();
}
return (stime > etime) ? (std::numeric_limits<uint64_t>::max)()
: etime - stime;
}
private:
std::vector<uint64_t> timestamps_;
};
//==============================================================================
/// The base class to describe an inflight inference request.
///
class InferRequest {
public:
InferRequest(
InferenceServerClient::OnCompleteFn callback = nullptr,
const bool verbose = false)
: callback_(callback), verbose_(verbose)
{
}
virtual ~InferRequest() = default;
RequestTimers& Timer() { return timer_; }
protected:
InferenceServerClient::OnCompleteFn callback_;
const bool verbose_;
private:
// The timers for infer request.
RequestTimers timer_;
};
}} // namespace triton::client