-
Notifications
You must be signed in to change notification settings - Fork 43
/
test.py
95 lines (74 loc) · 3.84 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
r""" Hypercorrelation Squeeze testing code """
import argparse
import torch.nn.functional as F
import torch.nn as nn
import torch
from model.hsnet import HypercorrSqueezeNetwork
from common.logger import Logger, AverageMeter
from common.vis import Visualizer
from common.evaluation import Evaluator
from common import utils
from data.dataset import FSSDataset
def test(model, dataloader, nshot):
r""" Test HSNet """
# Freeze randomness during testing for reproducibility
utils.fix_randseed(0)
average_meter = AverageMeter(dataloader.dataset)
for idx, batch in enumerate(dataloader):
# 1. Hypercorrelation Squeeze Networks forward pass
batch = utils.to_cuda(batch)
pred_mask = model.module.predict_mask_nshot(batch, nshot=nshot)
assert pred_mask.size() == batch['query_mask'].size()
# 2. Evaluate prediction
area_inter, area_union = Evaluator.classify_prediction(pred_mask.clone(), batch)
average_meter.update(area_inter, area_union, batch['class_id'], loss=None)
average_meter.write_process(idx, len(dataloader), epoch=-1, write_batch_idx=1)
# Visualize predictions
if Visualizer.visualize:
Visualizer.visualize_prediction_batch(batch['support_imgs'], batch['support_masks'],
batch['query_img'], batch['query_mask'],
pred_mask, batch['class_id'], idx,
area_inter[1].float() / area_union[1].float())
# Write evaluation results
average_meter.write_result('Test', 0)
miou, fb_iou = average_meter.compute_iou()
return miou, fb_iou
if __name__ == '__main__':
# Arguments parsing
parser = argparse.ArgumentParser(description='Hypercorrelation Squeeze Pytorch Implementation')
parser.add_argument('--datapath', type=str, default='../Datasets_HSN')
parser.add_argument('--benchmark', type=str, default='pascal', choices=['pascal', 'coco', 'fss'])
parser.add_argument('--logpath', type=str, default='')
parser.add_argument('--bsz', type=int, default=1)
parser.add_argument('--nworker', type=int, default=0)
parser.add_argument('--load', type=str, default='')
parser.add_argument('--fold', type=int, default=0, choices=[0, 1, 2, 3])
parser.add_argument('--nshot', type=int, default=1)
parser.add_argument('--backbone', type=str, default='resnet101', choices=['vgg16', 'resnet50', 'resnet101'])
parser.add_argument('--visualize', action='store_true')
parser.add_argument('--use_original_imgsize', action='store_true')
args = parser.parse_args()
Logger.initialize(args, training=False)
# Model initialization
model = HypercorrSqueezeNetwork(args.backbone, args.use_original_imgsize)
model.eval()
Logger.log_params(model)
# Device setup
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Logger.info('# available GPUs: %d' % torch.cuda.device_count())
model = nn.DataParallel(model)
model.to(device)
# Load trained model
if args.load == '': raise Exception('Pretrained model not specified.')
model.load_state_dict(torch.load(args.load))
# Helper classes (for testing) initialization
Evaluator.initialize()
Visualizer.initialize(args.visualize)
# Dataset initialization
FSSDataset.initialize(img_size=400, datapath=args.datapath, use_original_imgsize=args.use_original_imgsize)
dataloader_test = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'test', args.nshot)
# Test HSNet
with torch.no_grad():
test_miou, test_fb_iou = test(model, dataloader_test, args.nshot)
Logger.info('Fold %d mIoU: %5.2f \t FB-IoU: %5.2f' % (args.fold, test_miou.item(), test_fb_iou.item()))
Logger.info('==================== Finished Testing ====================')