|
| 1 | +from __future__ import absolute_import |
| 2 | +from __future__ import division |
| 3 | +from __future__ import print_function |
| 4 | + |
| 5 | +import argparse |
| 6 | +import sys |
| 7 | + |
| 8 | +import tensorflow as tf |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +import time |
| 12 | + |
| 13 | +FLAGS = None |
| 14 | + |
| 15 | +def m(O,Rr,Rs,Ra): |
| 16 | + return tf.concat([tf.matmul(O,Rr),tf.matmul(O,Rs),Ra],0); |
| 17 | + |
| 18 | + |
| 19 | +def phi_R(B): |
| 20 | + h_size=150; |
| 21 | + B_trans=tf.transpose(B); |
| 22 | + w1 = tf.Variable(tf.truncated_normal([(2*FLAGS.Ds+FLAGS.Dr), h_size], stddev=0.1), name="r_w1", dtype=tf.float32); |
| 23 | + b1 = tf.Variable(tf.zeros([h_size]), name="r_b1", dtype=tf.float32); |
| 24 | + h1 = tf.nn.relu(tf.matmul(B_trans, w1) + b1); |
| 25 | + w2 = tf.Variable(tf.truncated_normal([h_size, h_size], stddev=0.1), name="r_w2", dtype=tf.float32); |
| 26 | + b2 = tf.Variable(tf.zeros([h_size]), name="r_b2", dtype=tf.float32); |
| 27 | + h2 = tf.nn.relu(tf.matmul(h1, w2) + b2); |
| 28 | + w3 = tf.Variable(tf.truncated_normal([h_size, h_size], stddev=0.1), name="r_w3", dtype=tf.float32); |
| 29 | + b3 = tf.Variable(tf.zeros([h_size]), name="r_b3", dtype=tf.float32); |
| 30 | + h3 = tf.nn.relu(tf.matmul(h2, w3) + b3); |
| 31 | + w4 = tf.Variable(tf.truncated_normal([h_size, h_size], stddev=0.1), name="r_w4", dtype=tf.float32); |
| 32 | + b4 = tf.Variable(tf.zeros([h_size]), name="r_b4", dtype=tf.float32); |
| 33 | + h4 = tf.nn.relu(tf.matmul(h3, w4) + b4); |
| 34 | + w5 = tf.Variable(tf.truncated_normal([h_size, FLAGS.De], stddev=0.1), name="r_w5", dtype=tf.float32); |
| 35 | + b5 = tf.Variable(tf.zeros([FLAGS.De]), name="r_b5", dtype=tf.float32); |
| 36 | + h4 = tf.matmul(h4, w5) + b5; |
| 37 | + h4_trans=tf.transpose(h4); |
| 38 | + return(h4_trans); |
| 39 | + |
| 40 | +def a(O,Rr,X,E): |
| 41 | + E_bar=tf.matmul(E,tf.transpose(Rr)); |
| 42 | + return (tf.concat([O,X,E_bar],0)); |
| 43 | + |
| 44 | +def phi_O(C): |
| 45 | + h_size=100; |
| 46 | + C_trans=tf.transpose(C); |
| 47 | + w1 = tf.Variable(tf.truncated_normal([(FLAGS.Ds+FLAGS.Dx+FLAGS.De), h_size], stddev=0.1), name="o_w1", dtype=tf.float32); |
| 48 | + b1 = tf.Variable(tf.zeros([h_size]), name="o_b1", dtype=tf.float32); |
| 49 | + h1 = tf.nn.relu(tf.matmul(C_trans, w1) + b1); |
| 50 | + w2 = tf.Variable(tf.truncated_normal([h_size, FLAGS.Dp], stddev=0.1), name="o_w1", dtype=tf.float32); |
| 51 | + b2 = tf.Variable(tf.zeros([FLAGS.Dp]), name="o_b1", dtype=tf.float32); |
| 52 | + h2 = tf.matmul(h1, w2) + b2; |
| 53 | + h2_trans=tf.transpose(h2); |
| 54 | + return(h2_trans); |
| 55 | + |
| 56 | +def phi_A(P): |
| 57 | + h_size=25; |
| 58 | + p_bar=tf.reduce_sum(P,1); |
| 59 | + w1 = tf.Variable(tf.truncated_normal([FLAGS.Dp, h_size], stddev=0.1), name="a_w1", dtype=tf.float32); |
| 60 | + b1 = tf.Variable(tf.zeros([h_size]), name="a_b1", dtype=tf.float32); |
| 61 | + h1 = tf.nn.relu(tf.matmul([p_bar], w1) + b1); |
| 62 | + w2 = tf.Variable(tf.truncated_normal([h_size, FLAGS.Da], stddev=0.1), name="a_w2", dtype=tf.float32); |
| 63 | + b2 = tf.Variable(tf.zeros([FLAGS.Da]), name="a_b2", dtype=tf.float32); |
| 64 | + h2 = tf.matmul(h1, w2) + b2; |
| 65 | + return(h1); |
| 66 | + |
| 67 | +def train(): |
| 68 | + """ |
| 69 | + # Object Matrix |
| 70 | + O=np.zeros((FLAGS.Ds,FLAGS.No),dtype=float); |
| 71 | + # Relation Matrics R=<Rr,Rs,Ra> |
| 72 | + R=np.zeros(3,dtype=object); |
| 73 | + R[0]=np.zeros((FLAGS.No,FLAGS.Nr),dtype=float); |
| 74 | + R[1]=np.zeros((FLAGS.No,FLAGS.Nr),dtype=float); |
| 75 | + R[2]=np.zeros((FLAGS.Dr,FLAGS.Nr),dtype=float); |
| 76 | + # External Effects |
| 77 | + X=np.zeros((FLAGS.Dx,FLAGS.No),dtype=float); |
| 78 | + |
| 79 | + # marshalling function, m(G)=B, G=<O,R> |
| 80 | + B=m(O,R); |
| 81 | + """ |
| 82 | + |
| 83 | + # Object Matrix |
| 84 | + O = tf.placeholder(tf.float32, [FLAGS.Ds,FLAGS.No], name="O"); |
| 85 | + # Relation Matrics R=<Rr,Rs,Ra> |
| 86 | + Rr = tf.placeholder(tf.float32, [FLAGS.No,FLAGS.Nr], name="Rr"); |
| 87 | + Rs = tf.placeholder(tf.float32, [FLAGS.No,FLAGS.Nr], name="Rs"); |
| 88 | + Ra = tf.placeholder(tf.float32, [FLAGS.Dr,FLAGS.Nr], name="Ra"); |
| 89 | + # External Effects |
| 90 | + X = tf.placeholder(tf.float32, [FLAGS.Dx,FLAGS.No], name="X"); |
| 91 | + |
| 92 | + # marshalling function, m(G)=B, G=<O,R> |
| 93 | + B=m(O,Rr,Rs,Ra); |
| 94 | + |
| 95 | + # relational modeling phi_R(B)=E |
| 96 | + E=phi_R(B); |
| 97 | + |
| 98 | + # aggregator |
| 99 | + C=a(O,Rr,X,E); |
| 100 | + |
| 101 | + # object modeling phi_O(C)=P |
| 102 | + P=phi_O(C); |
| 103 | + |
| 104 | + # abstract modeling phi_A(P)=q |
| 105 | + q=phi_A(P); |
| 106 | + print(q);exit(1); |
| 107 | + |
| 108 | +def main(_): |
| 109 | + FLAGS.log_dir+=str(int(time.time())); |
| 110 | + if tf.gfile.Exists(FLAGS.log_dir): |
| 111 | + tf.gfile.DeleteRecursively(FLAGS.log_dir) |
| 112 | + tf.gfile.MakeDirs(FLAGS.log_dir) |
| 113 | + train() |
| 114 | + |
| 115 | + |
| 116 | +if __name__ == '__main__': |
| 117 | + parser = argparse.ArgumentParser() |
| 118 | + parser.add_argument('--log_dir', type=str, default='/tmp/interaction-network/', |
| 119 | + help='Summaries log directry') |
| 120 | + parser.add_argument('--Ds', type=int, default=5, |
| 121 | + help='The Number of State') |
| 122 | + parser.add_argument('--No', type=int, default=5, |
| 123 | + help='The Number of Objects') |
| 124 | + parser.add_argument('--Nr', type=int, default=5, |
| 125 | + help='The Number of Relations') |
| 126 | + parser.add_argument('--Dr', type=int, default=5, |
| 127 | + help='The Relationship Dimension') |
| 128 | + parser.add_argument('--Dx', type=int, default=3, |
| 129 | + help='The External Effect Dimension') |
| 130 | + parser.add_argument('--De', type=int, default=50, |
| 131 | + help='The Effect Dimension') |
| 132 | + parser.add_argument('--Dp', type=int, default=2, |
| 133 | + help='The Object Modeling Output Dimension') |
| 134 | + parser.add_argument('--Da', type=int, default=1, |
| 135 | + help='The Abstract Modeling Output Dimension') |
| 136 | + FLAGS, unparsed = parser.parse_known_args() |
| 137 | + tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) |
0 commit comments