-
Notifications
You must be signed in to change notification settings - Fork 0
/
references.bib
278 lines (253 loc) · 9.63 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
@article{olah2017feature,
author = {Olah, Chris and Mordvintsev, Alexander and Schubert, Ludwig},
title = {Feature Visualization},
journal = {Distill},
year = {2017},
note = {https://distill.pub/2017/feature-visualization},
doi = {10.23915/distill.00007}
}
@ARTICLE{2016arXiv160307285D,
author = {{Dumoulin}, Vincent and {Visin}, Francesco},
title = "{A guide to convolution arithmetic for deep learning}",
journal = {arXiv e-prints},
keywords = {Statistics - Machine Learning, Computer Science - Machine Learning, Computer Science - Neural and Evolutionary Computing},
year = 2016,
month = mar,
eid = {arXiv:1603.07285},
pages = {arXiv:1603.07285},
archivePrefix = {arXiv},
eprint = {1603.07285},
primaryClass = {stat.ML},
adsurl = {https://ui.adsabs.harvard.edu/abs/2016arXiv160307285D},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{RonnebergerFB15,
author = {Olaf Ronneberger and
Philipp Fischer and
Thomas Brox},
title = {U-Net: Convolutional Networks for Biomedical Image Segmentation},
journal = {CoRR},
volume = {abs/1505.04597},
year = {2015},
url = {http://arxiv.org/abs/1505.04597},
eprinttype = {arXiv},
eprint = {1505.04597},
timestamp = {Mon, 13 Aug 2018 16:46:52 +0200},
biburl = {https://dblp.org/rec/journals/corr/RonnebergerFB15.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{abs-1801-04381,
author = {Mark Sandler and
Andrew G. Howard and
Menglong Zhu and
Andrey Zhmoginov and
Liang{-}Chieh Chen},
title = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification,
Detection and Segmentation},
journal = {CoRR},
volume = {abs/1801.04381},
year = {2018},
url = {http://arxiv.org/abs/1801.04381},
eprinttype = {arXiv},
eprint = {1801.04381},
timestamp = {Tue, 12 Jan 2021 15:30:06 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@ARTICLE{2017arXiv171009412Z,
author = {{Zhang}, Hongyi and {Cisse}, Moustapha and {Dauphin}, Yann N. and {Lopez-Paz}, David},
title = "{mixup: Beyond Empirical Risk Minimization}",
journal = {arXiv e-prints},
keywords = {Computer Science - Machine Learning, Statistics - Machine Learning},
year = 2017,
month = oct,
eid = {arXiv:1710.09412},
pages = {arXiv:1710.09412},
archivePrefix = {arXiv},
eprint = {1710.09412},
primaryClass = {cs.LG},
adsurl = {https://ui.adsabs.harvard.edu/abs/2017arXiv171009412Z},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@book{ISLR2,
title={An Introduction to Statistical Learning: with Applications in R},
author={Gareth James and Daniela Witten and Trevor Hastie and Robert Tibshirani},
publisher={Springer},
year={2021}
}
@article{10.5555/2627435.2670313,
author = {Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan},
title = {Dropout: A Simple Way to Prevent Neural Networks from Overfitting},
year = {2014},
issue_date = {January 2014},
publisher = {JMLR.org},
volume = {15},
number = {1},
issn = {1532-4435},
journal = {J. Mach. Learn. Res.},
month = {jan},
pages = {1929–1958},
numpages = {30},
keywords = {neural networks, model combination, regularization, deep learning}
}
@misc{ioffe2015batch,
title={Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift}, author={Sergey Ioffe and Christian Szegedy},
year={2015},
eprint={1502.03167},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{Smith15a,
author = {Leslie N. Smith},
title = {No More Pesky Learning Rate Guessing Games},
journal = {CoRR},
volume = {abs/1506.01186},
year = {2015},
url = {http://arxiv.org/abs/1506.01186},
archivePrefix = {arXiv},
eprint = {1506.01186},
timestamp = {Mon, 13 Aug 2018 16:47:53 +0200},
biburl = {https://dblp.org/rec/journals/corr/Smith15a.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{LoshchilovH16a,
author = {Ilya Loshchilov and
Frank Hutter},
title = {{SGDR:} Stochastic Gradient Descent with Restarts},
journal = {CoRR},
volume = {abs/1608.03983},
year = {2016},
url = {http://arxiv.org/abs/1608.03983},
archivePrefix = {arXiv},
eprint = {1608.03983},
timestamp = {Mon, 13 Aug 2018 16:48:29 +0200},
biburl = {https://dblp.org/rec/journals/corr/LoshchilovH16a.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{abs-1708-07120,
author = {Leslie N. Smith and
Nicholay Topin},
title = {Super-Convergence: Very Fast Training of Residual Networks Using Large
Learning Rates},
journal = {CoRR},
volume = {abs/1708.07120},
year = {2017},
url = {http://arxiv.org/abs/1708.07120},
archivePrefix = {arXiv},
eprint = {1708.07120},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1708-07120.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{HeZRS15,
author = {Kaiming He and
Xiangyu Zhang and
Shaoqing Ren and
Jian Sun},
title = {Deep Residual Learning for Image Recognition},
journal = {CoRR},
volume = {abs/1512.03385},
year = {2015},
url = {http://arxiv.org/abs/1512.03385},
eprinttype = {arXiv},
eprint = {1512.03385},
timestamp = {Wed, 17 Apr 2019 17:23:45 +0200},
biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{hochreiter1997long,
added-at = {2016-11-15T08:49:43.000+0100},
author = {Hochreiter, Sepp and Schmidhuber, J{\"u}rgen},
biburl = {https://www.bibsonomy.org/bibtex/2a4a80026d24955b267cae636aa8abe4a/dallmann},
interhash = {0692b471c4b9ae65d00affebc09fb467},
intrahash = {a4a80026d24955b267cae636aa8abe4a},
journal = {Neural computation},
keywords = {lstm rnn},
number = 8,
pages = {1735--1780},
publisher = {MIT Press},
timestamp = {2016-11-15T08:49:43.000+0100},
title = {Long short-term memory},
volume = 9,
year = 1997
}
@article{ChoMGBSB14,
author = {Kyunghyun Cho and
Bart van Merrienboer and
{\c{C}}aglar G{\"{u}}l{\c{c}}ehre and
Fethi Bougares and
Holger Schwenk and
Yoshua Bengio},
title = {Learning Phrase Representations using {RNN} Encoder-Decoder for Statistical
Machine Translation},
journal = {CoRR},
volume = {abs/1406.1078},
year = {2014},
url = {http://arxiv.org/abs/1406.1078},
eprinttype = {arXiv},
eprint = {1406.1078},
timestamp = {Mon, 13 Aug 2018 16:46:44 +0200},
biburl = {https://dblp.org/rec/journals/corr/ChoMGBSB14.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{abs-1804-03209,
author = {Pete Warden},
title = {Speech Commands: {A} Dataset for Limited-Vocabulary Speech Recognition},
journal = {CoRR},
volume = {abs/1804.03209},
year = {2018},
url = {http://arxiv.org/abs/1804.03209},
eprinttype = {arXiv},
eprint = {1804.03209},
timestamp = {Mon, 13 Aug 2018 16:48:32 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1804-03209.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{2019EA000740,
author = {Cho, Dongjin and Yoo, Cheolhee and Im, Jungho and Cha, Dong-Hyun},
title = {Comparative Assessment of Various Machine Learning-Based Bias Correction Methods for Numerical Weather Prediction Model Forecasts of Extreme Air Temperatures in Urban Areas},
journal = {Earth and Space Science},
volume = {7},
number = {4},
pages = {e2019EA000740},
keywords = {Air temperature forecast, bias correction, random forest, support vector regression, artificial neural networks, multi-model ensemble},
doi = {https://doi.org/10.1029/2019EA000740},
url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000740},
eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019EA000740},
note = {e2019EA000740 2019EA000740},
year = {2020}
}
@book{Trefethen,
title={Numerical linear algebra},
author={Lloyd N. Trefethen and David Bau},
publisher={SIAM},
year={1997}
}
@book{Osgood,
title={Lectures on the Fourier Transform and Its Applications},
author={Brad Osgood},
publisher={American Mathematical Society},
year={2019}
}
@book{waves,
title={Physics of Oscillations and Waves. With use of Matlab and Python},
author={Arnt Inge Vistnes},
publisher={Springer},
year={2018}
}
@article{abs-2104-13478,
author = {Michael M. Bronstein and
Joan Bruna and
Taco Cohen and
Petar Velickovic},
title = {Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges},
journal = {CoRR},
volume = {abs/2104.13478},
year = {2021},
url = {https://arxiv.org/abs/2104.13478},
eprinttype = {arXiv},
eprint = {2104.13478},
timestamp = {Tue, 04 May 2021 15:12:43 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2104-13478.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}