diff --git a/ci/requirements-2.7_COMPAT.build b/ci/requirements-2.7_COMPAT.build index 0e1ccf9eac9bf1..0159505a2c2851 100644 --- a/ci/requirements-2.7_COMPAT.build +++ b/ci/requirements-2.7_COMPAT.build @@ -1,5 +1,6 @@ python=2.7* -numpy=1.7.1 +numpy=1.9.1 +libgfortran=3.0.0 cython=0.23 dateutil=1.5 pytz=2013b diff --git a/ci/requirements-2.7_COMPAT.run b/ci/requirements-2.7_COMPAT.run index d27b6a72c2d158..63c5d95bbb900d 100644 --- a/ci/requirements-2.7_COMPAT.run +++ b/ci/requirements-2.7_COMPAT.run @@ -1,10 +1,10 @@ -numpy=1.7.1 +numpy=1.9.1 dateutil=1.5 pytz=2013b -scipy=0.11.0 +scipy=0.14.0 xlwt=0.7.5 xlrd=0.9.2 -bottleneck=0.8.0 +bottleneck=1.0.0 numexpr=2.2.2 pytables=3.0.0 html5lib=1.0b2 diff --git a/ci/requirements-2.7_LOCALE.build b/ci/requirements-2.7_LOCALE.build index 4a37ce8fbe1613..7e309681909a49 100644 --- a/ci/requirements-2.7_LOCALE.build +++ b/ci/requirements-2.7_LOCALE.build @@ -1,5 +1,6 @@ python=2.7* python-dateutil pytz=2013b -numpy=1.8.2 +numpy=1.9.1 +libgfortran=3.0.0 cython=0.23 diff --git a/ci/requirements-2.7_LOCALE.run b/ci/requirements-2.7_LOCALE.run index 5d7cc31b7d55ed..f7533e98d58894 100644 --- a/ci/requirements-2.7_LOCALE.run +++ b/ci/requirements-2.7_LOCALE.run @@ -1,12 +1,12 @@ python-dateutil pytz=2013b -numpy=1.8.2 +numpy=1.9.1 xlwt=0.7.5 openpyxl=1.6.2 xlsxwriter=0.4.6 xlrd=0.9.2 -bottleneck=0.8.0 -matplotlib=1.3.1 +bottleneck=1.0.0 +matplotlib=1.4.3 sqlalchemy=0.8.1 html5lib=1.0b2 lxml=3.2.1 diff --git a/ci/requirements-2.7_SLOW.build b/ci/requirements-2.7_SLOW.build index 0f4a2c6792e6b1..6e988104c340b4 100644 --- a/ci/requirements-2.7_SLOW.build +++ b/ci/requirements-2.7_SLOW.build @@ -1,5 +1,6 @@ python=2.7* python-dateutil pytz -numpy=1.8.2 +numpy=1.9.1 +libgfortran=3.0.0 cython diff --git a/ci/requirements-2.7_SLOW.run b/ci/requirements-2.7_SLOW.run index c2d2a14285ad6b..ca930c25609450 100644 --- a/ci/requirements-2.7_SLOW.run +++ b/ci/requirements-2.7_SLOW.run @@ -1,7 +1,7 @@ python-dateutil pytz -numpy=1.8.2 -matplotlib=1.3.1 +numpy=1.9.1 +matplotlib=1.4.3 scipy patsy xlwt diff --git a/doc/source/install.rst b/doc/source/install.rst index 48d51e1200447f..7962f0f4333d37 100644 --- a/doc/source/install.rst +++ b/doc/source/install.rst @@ -203,7 +203,7 @@ Dependencies ------------ * `setuptools `__ -* `NumPy `__: 1.7.1 or higher +* `NumPy `__: 1.9.0 or higher * `python-dateutil `__: 1.5 or higher * `pytz `__: Needed for time zone support @@ -217,7 +217,7 @@ Recommended Dependencies If installed, must be Version 2.4.6 or higher. * `bottleneck `__: for accelerating certain types of ``nan`` - evaluations. ``bottleneck`` uses specialized cython routines to achieve large speedups. + evaluations. ``bottleneck`` uses specialized cython routines to achieve large speedups, Version 1.0.0 or higher. .. note:: @@ -232,7 +232,7 @@ Optional Dependencies * `Cython `__: Only necessary to build development version. Version 0.23 or higher. -* `SciPy `__: miscellaneous statistical functions +* `SciPy `__: miscellaneous statistical functions, Version 0.14.0 or higher * `xarray `__: pandas like handling for > 2 dims, needed for converting Panels to xarray objects. Version 0.7.0 or higher is recommended. * `PyTables `__: necessary for HDF5-based storage. Version 3.0.0 or higher required, Version 3.2.1 or higher highly recommended. * `Feather Format `__: necessary for feather-based storage, version 0.3.1 or higher. @@ -242,7 +242,7 @@ Optional Dependencies * `pymysql `__: for MySQL. * `SQLite `__: for SQLite, this is included in Python's standard library by default. -* `matplotlib `__: for plotting +* `matplotlib `__: for plotting, Version 1.4.3 or higher. * For Excel I/O: * `xlrd/xlwt `__: Excel reading (xlrd) and writing (xlwt) diff --git a/doc/source/whatsnew/v0.21.0.txt b/doc/source/whatsnew/v0.21.0.txt index c63d4575bac43a..d4d9d5477d269d 100644 --- a/doc/source/whatsnew/v0.21.0.txt +++ b/doc/source/whatsnew/v0.21.0.txt @@ -46,6 +46,26 @@ Other Enhancements Backwards incompatible API changes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. _whatsnew_0210.api_breaking.deps: + +Dependencies have increased minimum versions +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +We have updated our minimum supported versions of dependencies (:issue:`15206`, :issue:`15543`, :issue:`15214`). We now require: + + +--------------+-----------------+ + | Package | Minimum Version | + +======================+=========+ + | Numpy | 1.9.1 | + +--------------+-----------------+ + | Matplotlib | 1.4.3 | + +--------------+-----------------+ + | Scipy | 0.14.0 | + +--------------+-----------------+ + | Bottleneck | 1.0.0 | + +--------------+-----------------+ + .. _whatsnew_0210.api_breaking.pandas_eval: Improved error handling during item assignment in pd.eval diff --git a/pandas/_libs/sparse.pyx b/pandas/_libs/sparse.pyx index 0c2e056ead7fac..1cc7f5ace95ea5 100644 --- a/pandas/_libs/sparse.pyx +++ b/pandas/_libs/sparse.pyx @@ -12,8 +12,6 @@ from distutils.version import LooseVersion # numpy versioning _np_version = np.version.short_version -_np_version_under1p8 = LooseVersion(_np_version) < '1.8' -_np_version_under1p9 = LooseVersion(_np_version) < '1.9' _np_version_under1p10 = LooseVersion(_np_version) < '1.10' _np_version_under1p11 = LooseVersion(_np_version) < '1.11' diff --git a/pandas/compat/numpy/__init__.py b/pandas/compat/numpy/__init__.py index 2c5a18973afa8f..5112957b498751 100644 --- a/pandas/compat/numpy/__init__.py +++ b/pandas/compat/numpy/__init__.py @@ -9,19 +9,18 @@ # numpy versioning _np_version = np.__version__ _nlv = LooseVersion(_np_version) -_np_version_under1p8 = _nlv < '1.8' -_np_version_under1p9 = _nlv < '1.9' _np_version_under1p10 = _nlv < '1.10' _np_version_under1p11 = _nlv < '1.11' _np_version_under1p12 = _nlv < '1.12' _np_version_under1p13 = _nlv < '1.13' _np_version_under1p14 = _nlv < '1.14' +_np_version_under1p15 = _nlv < '1.15' -if _nlv < '1.7.0': +if _nlv < '1.9': raise ImportError('this version of pandas is incompatible with ' - 'numpy < 1.7.0\n' + 'numpy < 1.9.0\n' 'your numpy version is {0}.\n' - 'Please upgrade numpy to >= 1.7.0 to use ' + 'Please upgrade numpy to >= 1.9.0 to use ' 'this pandas version'.format(_np_version)) @@ -70,11 +69,10 @@ def np_array_datetime64_compat(arr, *args, **kwargs): __all__ = ['np', - '_np_version_under1p8', - '_np_version_under1p9', '_np_version_under1p10', '_np_version_under1p11', '_np_version_under1p12', '_np_version_under1p13', - '_np_version_under1p14' + '_np_version_under1p14', + '_np_version_under1p15' ] diff --git a/pandas/core/algorithms.py b/pandas/core/algorithms.py index b490bf787a0376..ec27e276db2f5c 100644 --- a/pandas/core/algorithms.py +++ b/pandas/core/algorithms.py @@ -6,7 +6,7 @@ from warnings import warn, catch_warnings import numpy as np -from pandas import compat, _np_version_under1p8 +from pandas import compat from pandas.core.dtypes.cast import maybe_promote from pandas.core.dtypes.generic import ( ABCSeries, ABCIndex, @@ -398,11 +398,9 @@ def isin(comps, values): comps, dtype, _ = _ensure_data(comps) values, _, _ = _ensure_data(values, dtype=dtype) - # GH11232 - # work-around for numpy < 1.8 and comparisions on py3 # faster for larger cases to use np.in1d f = lambda x, y: htable.ismember_object(x, values) - if (_np_version_under1p8 and compat.PY3) or len(comps) > 1000000: + if len(comps) > 1000000: f = lambda x, y: np.in1d(x, y) elif is_integer_dtype(comps): try: diff --git a/pandas/core/generic.py b/pandas/core/generic.py index f12592feaa4c36..44f38211f03e20 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -1744,11 +1744,8 @@ def _box_item_values(self, key, values): def _maybe_cache_changed(self, item, value): """The object has called back to us saying maybe it has changed. - - numpy < 1.8 has an issue with object arrays and aliasing - GH6026 """ - self._data.set(item, value, check=pd._np_version_under1p8) + self._data.set(item, value, check=False) @property def _is_cached(self): diff --git a/pandas/core/groupby.py b/pandas/core/groupby.py index daf3381ae4e890..20f197ca60d3f5 100644 --- a/pandas/core/groupby.py +++ b/pandas/core/groupby.py @@ -13,7 +13,7 @@ ) from pandas import compat -from pandas.compat.numpy import function as nv, _np_version_under1p8 +from pandas.compat.numpy import function as nv from pandas.compat import set_function_name from pandas.core.dtypes.common import ( @@ -3256,11 +3256,7 @@ def value_counts(self, normalize=False, sort=True, ascending=False, d = np.diff(np.r_[idx, len(ids)]) if dropna: m = ids[lab == -1] - if _np_version_under1p8: - mi, ml = algorithms.factorize(m) - d[ml] = d[ml] - np.bincount(mi) - else: - np.add.at(d, m, -1) + np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) diff --git a/pandas/core/internals.py b/pandas/core/internals.py index f2a7ac76481d4a..77214ddec4bac4 100644 --- a/pandas/core/internals.py +++ b/pandas/core/internals.py @@ -66,8 +66,7 @@ import pandas.core.computation.expressions as expressions from pandas.util._decorators import cache_readonly from pandas.util._validators import validate_bool_kwarg - -from pandas import compat, _np_version_under1p9 +from pandas import compat from pandas.compat import range, map, zip, u @@ -1327,15 +1326,7 @@ def quantile(self, qs, interpolation='linear', axis=0, mgr=None): tuple of (axis, block) """ - if _np_version_under1p9: - if interpolation != 'linear': - raise ValueError("Interpolation methods other than linear " - "are not supported in numpy < 1.9.") - - kw = {} - if not _np_version_under1p9: - kw.update({'interpolation': interpolation}) - + kw = {'interpolation': interpolation} values = self.get_values() values, _, _, _ = self._try_coerce_args(values, values) diff --git a/pandas/tests/frame/test_quantile.py b/pandas/tests/frame/test_quantile.py index 2482e493dbefdc..2f264874378bce 100644 --- a/pandas/tests/frame/test_quantile.py +++ b/pandas/tests/frame/test_quantile.py @@ -12,7 +12,6 @@ from pandas.util.testing import assert_series_equal, assert_frame_equal import pandas.util.testing as tm -from pandas import _np_version_under1p9 from pandas.tests.frame.common import TestData @@ -103,9 +102,6 @@ def test_quantile_axis_parameter(self): def test_quantile_interpolation(self): # see gh-10174 - if _np_version_under1p9: - pytest.skip("Numpy version under 1.9") - from numpy import percentile # interpolation = linear (default case) @@ -166,44 +162,6 @@ def test_quantile_interpolation(self): index=[.25, .5], columns=['a', 'b', 'c']) assert_frame_equal(result, expected) - def test_quantile_interpolation_np_lt_1p9(self): - # see gh-10174 - if not _np_version_under1p9: - pytest.skip("Numpy version is greater than 1.9") - - from numpy import percentile - - # interpolation = linear (default case) - q = self.tsframe.quantile(0.1, axis=0, interpolation='linear') - assert q['A'] == percentile(self.tsframe['A'], 10) - q = self.intframe.quantile(0.1) - assert q['A'] == percentile(self.intframe['A'], 10) - - # test with and without interpolation keyword - q1 = self.intframe.quantile(0.1) - assert q1['A'] == np.percentile(self.intframe['A'], 10) - assert_series_equal(q, q1) - - # interpolation method other than default linear - msg = "Interpolation methods other than linear" - df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3]) - with tm.assert_raises_regex(ValueError, msg): - df.quantile(.5, axis=1, interpolation='nearest') - - with tm.assert_raises_regex(ValueError, msg): - df.quantile([.5, .75], axis=1, interpolation='lower') - - # test degenerate case - df = DataFrame({'x': [], 'y': []}) - with tm.assert_raises_regex(ValueError, msg): - q = df.quantile(0.1, axis=0, interpolation='higher') - - # multi - df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], - columns=['a', 'b', 'c']) - with tm.assert_raises_regex(ValueError, msg): - df.quantile([.25, .5], interpolation='midpoint') - def test_quantile_multi(self): df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=['a', 'b', 'c']) diff --git a/pandas/tests/indexes/datetimes/test_datetime.py b/pandas/tests/indexes/datetimes/test_datetime.py index f99dcee9e5c8ab..47f53f53cfd021 100644 --- a/pandas/tests/indexes/datetimes/test_datetime.py +++ b/pandas/tests/indexes/datetimes/test_datetime.py @@ -9,7 +9,7 @@ from pandas.compat import lrange from pandas.compat.numpy import np_datetime64_compat from pandas import (DatetimeIndex, Index, date_range, Series, DataFrame, - Timestamp, datetime, offsets, _np_version_under1p8) + Timestamp, datetime, offsets) from pandas.util.testing import assert_series_equal, assert_almost_equal @@ -276,11 +276,7 @@ def test_comparisons_nat(self): np_datetime64_compat('2014-06-01 00:00Z'), np_datetime64_compat('2014-07-01 00:00Z')]) - if _np_version_under1p8: - # cannot test array because np.datetime('nat') returns today's date - cases = [(fidx1, fidx2), (didx1, didx2)] - else: - cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] + cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): diff --git a/pandas/tests/indexes/period/test_indexing.py b/pandas/tests/indexes/period/test_indexing.py index d4dac1cf88fffb..efc13a56cd77e4 100644 --- a/pandas/tests/indexes/period/test_indexing.py +++ b/pandas/tests/indexes/period/test_indexing.py @@ -8,7 +8,7 @@ from pandas.compat import lrange from pandas._libs import tslib from pandas import (PeriodIndex, Series, DatetimeIndex, - period_range, Period, _np_version_under1p9) + period_range, Period) class TestGetItem(object): @@ -149,16 +149,12 @@ def test_getitem_seconds(self): values = ['2014', '2013/02', '2013/01/02', '2013/02/01 9H', '2013/02/01 09:00'] for v in values: - if _np_version_under1p9: - with pytest.raises(ValueError): - idx[v] - else: - # GH7116 - # these show deprecations as we are trying - # to slice with non-integer indexers - # with pytest.raises(IndexError): - # idx[v] - continue + # GH7116 + # these show deprecations as we are trying + # to slice with non-integer indexers + # with pytest.raises(IndexError): + # idx[v] + continue s = Series(np.random.rand(len(idx)), index=idx) tm.assert_series_equal(s['2013/01/01 10:00'], s[3600:3660]) @@ -178,16 +174,12 @@ def test_getitem_day(self): '2013/02/01 09:00'] for v in values: - if _np_version_under1p9: - with pytest.raises(ValueError): - idx[v] - else: - # GH7116 - # these show deprecations as we are trying - # to slice with non-integer indexers - # with pytest.raises(IndexError): - # idx[v] - continue + # GH7116 + # these show deprecations as we are trying + # to slice with non-integer indexers + # with pytest.raises(IndexError): + # idx[v] + continue s = Series(np.random.rand(len(idx)), index=idx) tm.assert_series_equal(s['2013/01'], s[0:31]) diff --git a/pandas/tests/indexes/timedeltas/test_timedelta.py b/pandas/tests/indexes/timedeltas/test_timedelta.py index 59e4b1432b8bc1..0b3bd0b03bccfd 100644 --- a/pandas/tests/indexes/timedeltas/test_timedelta.py +++ b/pandas/tests/indexes/timedeltas/test_timedelta.py @@ -7,7 +7,7 @@ import pandas.util.testing as tm from pandas import (timedelta_range, date_range, Series, Timedelta, DatetimeIndex, TimedeltaIndex, Index, DataFrame, - Int64Index, _np_version_under1p8) + Int64Index) from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_index_equal) @@ -379,11 +379,7 @@ def test_comparisons_nat(self): np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) - if _np_version_under1p8: - # cannot test array because np.datetime('nat') returns today's date - cases = [(tdidx1, tdidx2)] - else: - cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] + cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: diff --git a/pandas/tests/series/test_operators.py b/pandas/tests/series/test_operators.py index 2e400812e0331f..a51d71ddbdd3ec 100644 --- a/pandas/tests/series/test_operators.py +++ b/pandas/tests/series/test_operators.py @@ -14,8 +14,7 @@ import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, - NaT, date_range, timedelta_range, - _np_version_under1p8) + NaT, date_range, timedelta_range) from pandas.core.indexes.datetimes import Timestamp from pandas.core.indexes.timedeltas import Timedelta import pandas.core.nanops as nanops @@ -687,14 +686,13 @@ def run_ops(ops, get_ser, test_ser): assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas - if not _np_version_under1p8: - result = td1[0] + dt1 - exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) - assert_series_equal(result, exp) + result = td1[0] + dt1 + exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) + assert_series_equal(result, exp) - result = td2[0] + dt2 - exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) - assert_series_equal(result, exp) + result = td2[0] + dt2 + exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) + assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) diff --git a/pandas/tests/series/test_quantile.py b/pandas/tests/series/test_quantile.py index 2d02260ac7303f..c0a26f3c1c554c 100644 --- a/pandas/tests/series/test_quantile.py +++ b/pandas/tests/series/test_quantile.py @@ -1,11 +1,10 @@ # coding=utf-8 # pylint: disable-msg=E1101,W0612 -import pytest import numpy as np import pandas as pd -from pandas import (Index, Series, _np_version_under1p9) +from pandas import Index, Series from pandas.core.indexes.datetimes import Timestamp from pandas.core.dtypes.common import is_integer import pandas.util.testing as tm @@ -68,8 +67,6 @@ def test_quantile_multi(self): [], dtype=float)) tm.assert_series_equal(result, expected) - @pytest.mark.skipif(_np_version_under1p9, - reason="Numpy version is under 1.9") def test_quantile_interpolation(self): # see gh-10174 @@ -82,8 +79,6 @@ def test_quantile_interpolation(self): # test with and without interpolation keyword assert q == q1 - @pytest.mark.skipif(_np_version_under1p9, - reason="Numpy version is under 1.9") def test_quantile_interpolation_dtype(self): # GH #10174 @@ -96,26 +91,6 @@ def test_quantile_interpolation_dtype(self): assert q == np.percentile(np.array([1, 3, 4]), 50) assert is_integer(q) - @pytest.mark.skipif(not _np_version_under1p9, - reason="Numpy version is greater 1.9") - def test_quantile_interpolation_np_lt_1p9(self): - # GH #10174 - - # interpolation = linear (default case) - q = self.ts.quantile(0.1, interpolation='linear') - assert q == np.percentile(self.ts.valid(), 10) - q1 = self.ts.quantile(0.1) - assert q1 == np.percentile(self.ts.valid(), 10) - - # interpolation other than linear - msg = "Interpolation methods other than " - with tm.assert_raises_regex(ValueError, msg): - self.ts.quantile(0.9, interpolation='nearest') - - # object dtype - with tm.assert_raises_regex(ValueError, msg): - Series(self.ts, dtype=object).quantile(0.7, interpolation='higher') - def test_quantile_nan(self): # GH 13098 diff --git a/pandas/tests/sparse/test_array.py b/pandas/tests/sparse/test_array.py index 4ce03f72dbba6e..b0a9182a265fe8 100644 --- a/pandas/tests/sparse/test_array.py +++ b/pandas/tests/sparse/test_array.py @@ -8,7 +8,6 @@ from numpy import nan import numpy as np -from pandas import _np_version_under1p8 from pandas.core.sparse.api import SparseArray, SparseSeries from pandas._libs.sparse import IntIndex from pandas.util.testing import assert_almost_equal @@ -150,10 +149,8 @@ def test_take(self): assert np.isnan(self.arr.take(0)) assert np.isscalar(self.arr.take(2)) - # np.take in < 1.8 doesn't support scalar indexing - if not _np_version_under1p8: - assert self.arr.take(2) == np.take(self.arr_data, 2) - assert self.arr.take(6) == np.take(self.arr_data, 6) + assert self.arr.take(2) == np.take(self.arr_data, 2) + assert self.arr.take(6) == np.take(self.arr_data, 6) exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) diff --git a/pandas/tests/test_nanops.py b/pandas/tests/test_nanops.py index 6798e64b01d7e2..8c9aa648e1274c 100644 --- a/pandas/tests/test_nanops.py +++ b/pandas/tests/test_nanops.py @@ -8,7 +8,7 @@ import numpy as np import pandas as pd -from pandas import Series, isnull, _np_version_under1p9 +from pandas import Series, isnull from pandas.core.dtypes.common import is_integer_dtype import pandas.core.nanops as nanops import pandas.util.testing as tm @@ -340,15 +340,13 @@ def test_nanmean_overflow(self): # In the previous implementation mean can overflow for int dtypes, it # is now consistent with numpy - # numpy < 1.9.0 is not computing this correctly - if not _np_version_under1p9: - for a in [2 ** 55, -2 ** 55, 20150515061816532]: - s = Series(a, index=range(500), dtype=np.int64) - result = s.mean() - np_result = s.values.mean() - assert result == a - assert result == np_result - assert result.dtype == np.float64 + for a in [2 ** 55, -2 ** 55, 20150515061816532]: + s = Series(a, index=range(500), dtype=np.int64) + result = s.mean() + np_result = s.values.mean() + assert result == a + assert result == np_result + assert result.dtype == np.float64 def test_returned_dtype(self): diff --git a/pandas/tests/tools/test_numeric.py b/pandas/tests/tools/test_numeric.py index 664a97640387ef..1d13ba93ba7592 100644 --- a/pandas/tests/tools/test_numeric.py +++ b/pandas/tests/tools/test_numeric.py @@ -3,7 +3,7 @@ import numpy as np import pandas as pd -from pandas import to_numeric, _np_version_under1p9 +from pandas import to_numeric from pandas.util import testing as tm from numpy import iinfo @@ -355,9 +355,6 @@ def test_downcast(self): def test_downcast_limits(self): # Test the limits of each downcast. Bug: #14401. - # Check to make sure numpy is new enough to run this test. - if _np_version_under1p9: - pytest.skip("Numpy version is under 1.9") i = 'integer' u = 'unsigned' diff --git a/setup.py b/setup.py index 31a3cddc3f9fdf..947eb2fd3723d8 100755 --- a/setup.py +++ b/setup.py @@ -45,7 +45,7 @@ def is_platform_mac(): _have_setuptools = False setuptools_kwargs = {} -min_numpy_ver = '1.7.0' +min_numpy_ver = '1.9.0' if sys.version_info[0] >= 3: setuptools_kwargs = {