|
| 1 | +import praw |
| 2 | +import scipy as sp |
| 3 | +import numpy as np |
| 4 | +import sys |
| 5 | +import operator |
| 6 | +import time |
| 7 | +import project as p |
| 8 | +import matplotlib.pyplot as plt |
| 9 | +import scipy.cluster.hierarchy as hi |
| 10 | + |
| 11 | +class histogram: |
| 12 | + def __init__(self, dictionary=None): |
| 13 | + self.frequencies = {} |
| 14 | + if dictionary is not None: |
| 15 | + self.frequencies = dictionary |
| 16 | + |
| 17 | + def add_frequency(self, key, value): |
| 18 | + if key in self.frequencies: |
| 19 | + self.frequencies[key] += value |
| 20 | + else: |
| 21 | + self.frequencies[key] = value |
| 22 | + |
| 23 | + def add_by_frequencies(self,frequencies): |
| 24 | + for key in frequencies.frequencies: |
| 25 | + self.add_frequency(key, frequencies.frequencies[key]) |
| 26 | + |
| 27 | + def multiply_frequency(self, key, value): |
| 28 | + if key in self.frequencies: |
| 29 | + self.frequencies[key] *= value |
| 30 | + else: |
| 31 | + self.frequencies[key] = 0.0 |
| 32 | + |
| 33 | + def multiply_by_frequencies(self, frequencies): |
| 34 | + for key in frequencies.frequencies: |
| 35 | + self.multiply_frequency(key, frequencies.frequencies[key]) |
| 36 | + |
| 37 | + def multiply_by_scalar(self, scalar): |
| 38 | + for key in self.frequencies: |
| 39 | + self.multiply_frequency(key,scalar) |
| 40 | + |
| 41 | + def divide_frequency(self, key, value): |
| 42 | + if key in self.frequencies: |
| 43 | + if value != 0: |
| 44 | + if self.frequencies[key] == 0: |
| 45 | + self.frequencies[key] = 1.0 |
| 46 | + else: |
| 47 | + self.frequencies[key] /= (0.0 + value) |
| 48 | + else: |
| 49 | + if self.frequencies[key] == 0: |
| 50 | + self.frequencies[key] = 1.0 |
| 51 | + else: |
| 52 | + self.frequencies[key] = float('inf') |
| 53 | + else: |
| 54 | + if value > 0: |
| 55 | + self.frequencies[key] = 0.0 |
| 56 | + else: |
| 57 | + self.frequencies[key] = 1.0 |
| 58 | + |
| 59 | + def divide_by_frequencies(self, frequencies): |
| 60 | + for key in frequencies.frequencies: |
| 61 | + self.divide_frequency(key, frequencies.frequencies[key]) |
| 62 | + |
| 63 | + |
| 64 | +class comment: |
| 65 | + def __init__(self, comment): |
| 66 | + if comment is not None and hasattr(comment,'author') and comment.author is not None and hasattr(comment.author, 'name'): |
| 67 | + self.author_name = comment.author.name |
| 68 | + else: |
| 69 | + self.author_name = '' |
| 70 | + |
| 71 | + self.subreddit = str(comment.subreddit.display_name.strip(' ').lower()) |
| 72 | + |
| 73 | +class user: |
| 74 | + @staticmethod |
| 75 | + def get_histogram(comments, author_name): |
| 76 | + total_comments_by_author = 0 |
| 77 | + the_histogram = histogram() |
| 78 | + for comment in comments: |
| 79 | + if comment.author_name == author_name: |
| 80 | + total_comments_by_author += 1 |
| 81 | + the_histogram.add_frequency(comment.subreddit, 1) |
| 82 | + the_histogram.multiply_by_scalar(1.0 / total_comments_by_author) |
| 83 | + return the_histogram.frequencies |
| 84 | + |
| 85 | +class community: |
| 86 | + @staticmethod |
| 87 | + def get_histogram(comments, subreddit_name): |
| 88 | + total_comments_in_subreddit = 0 |
| 89 | + the_histogram = histogram() |
| 90 | + for comment in comments: |
| 91 | + if comment.subreddit == subreddit_name: |
| 92 | + total_comments_in_subreddit += 1 |
| 93 | + the_histogram.add_frequency(comment.author_name, 1) |
| 94 | + the_histogram.multiply_by_scalar(1.0 / total_comments_in_subreddit) |
| 95 | + return the_histogram.frequencies |
| 96 | + |
| 97 | + |
| 98 | +user_agent = ("Testing Reddit Functionality by /u/Reddit_Projector https://github.com/joshlemer/RedditProject") |
| 99 | +reddit = praw.Reddit(user_agent) |
| 100 | +subredditName = 'all' |
| 101 | +subreddit_object = reddit.get_subreddit(subredditName) |
| 102 | + |
| 103 | + |
| 104 | +x = 5 |
| 105 | +y = 5 |
| 106 | +z = 100 |
| 107 | +comments = [comment(a) for a in subreddit_object.get_comments(limit=x)] |
| 108 | +x_comments = [comment(a) for a in subreddit_object.get_comments(limit=x)] |
| 109 | +x_subs = [] |
| 110 | +i = 0 |
| 111 | +for c in x_comments: |
| 112 | + print "x = ", i |
| 113 | + if c.subreddit not in x_subs: |
| 114 | + x_subs.append(c.subreddit) |
| 115 | + i += 1 |
| 116 | + |
| 117 | +y_comments = [] |
| 118 | +i = 0 |
| 119 | +for x_sub in x_subs: |
| 120 | + print "y = ", i |
| 121 | + subreddit_object = reddit.get_subreddit(x_sub) |
| 122 | + y_comments += [comment(a) for a in subreddit_object.get_comments(limit=y)] |
| 123 | + i += 1 |
| 124 | + |
| 125 | +z_comments = [] |
| 126 | +i = 0 |
| 127 | +for y_com in y_comments: |
| 128 | + print "z = ", i |
| 129 | + z_comments += [comment(a) for a in reddit.get_redditor(y_com.author_name).get_comments(limit=z)] |
| 130 | + i += 1 |
| 131 | + |
| 132 | +comments = list(z_comments) |
| 133 | +print "COMMENTS LENGTH: ", len(comments) |
| 134 | + |
| 135 | +users = {} |
| 136 | +for comment in comments: |
| 137 | + if comment.author_name not in users: |
| 138 | + users[comment.author_name] = user.get_histogram(comments, comment.author_name) |
| 139 | + |
| 140 | +#for c in comments: |
| 141 | +# print "%s\t%s" % (c.author_name, c.subreddit) |
| 142 | + |
| 143 | +#print users |
| 144 | + |
| 145 | + |
| 146 | +subreddits = {} |
| 147 | +for comment in comments: |
| 148 | + if comment.subreddit not in subreddits: |
| 149 | + subreddits[comment.subreddit] = community.get_histogram(comments, comment.subreddit) |
| 150 | + |
| 151 | +#print subreddits |
| 152 | + |
| 153 | +sub_relatedness = {} |
| 154 | +for sub in subreddits: |
| 155 | + sub_histogram = histogram() |
| 156 | + for user in subreddits[sub]: |
| 157 | + user_histogram = histogram(users[user]) |
| 158 | + user_histogram.multiply_by_scalar(subreddits[sub][user]) |
| 159 | + |
| 160 | + sub_histogram.add_by_frequencies(user_histogram) |
| 161 | + sub_relatedness[sub] = sub_histogram.frequencies |
| 162 | + |
| 163 | +print sub_relatedness |
| 164 | + |
| 165 | +for u in sub_relatedness: |
| 166 | + if len(sub_relatedness[u]) != 1: |
| 167 | + print u, sub_relatedness[u] |
| 168 | + |
| 169 | +subreddit_names = [x for x in subreddits] |
| 170 | +print subreddit_names |
| 171 | +subreddit_rows = [] |
| 172 | +for sub in subreddit_names: |
| 173 | + sub_row = [] |
| 174 | + for sub_name in subreddit_names: |
| 175 | + if sub_name in sub_relatedness[sub]: |
| 176 | + sub_row.append(sub_relatedness[sub][sub_name]) |
| 177 | + else: |
| 178 | + sub_row.append(float(0)) |
| 179 | + subreddit_rows.append(sub_row) |
| 180 | +print subreddit_rows |
| 181 | + |
| 182 | +b = sp.spatial.distance.pdist(subreddit_rows, 'euclidean') |
| 183 | +c = hi.linkage(b,method='single', metric='euclidean') |
| 184 | +hi.dendrogram(c, labels=subreddit_names) |
| 185 | +plt.show() |
| 186 | + |
| 187 | + |
| 188 | + |
| 189 | + |
| 190 | + |
| 191 | + |
| 192 | + |
| 193 | + |
| 194 | + |
0 commit comments