![linux logo](https://raw.githubusercontent.com/github/explore/eb40fa94e4b686db568094600bb30065acce30c3/topics/linux/linux.png)
- Perú | Germany
-
14:53
(UTC +01:00) - https://joseluisq.net
- @joseluis_q
- https://discord.com/users/joseluisq
- https://keybase.io/joseluisq
- @joseluisq@social.treehouse.systems
- All languages
- ActionScript
- Assembly
- Astro
- Awk
- Batchfile
- Bikeshed
- C
- C#
- C++
- CMake
- CSS
- CartoCSS
- Clojure
- CoffeeScript
- Crystal
- Cuda
- D
- DIGITAL Command Language
- Dart
- Dockerfile
- EJS
- Elixir
- Elm
- Emacs Lisp
- Erlang
- F#
- FLUX
- Fortran
- Frege
- Go
- Groovy
- HCL
- HTML
- Haml
- Handlebars
- Haskell
- HolyC
- Java
- JavaScript
- Jinja
- Jsonnet
- Julia
- Jupyter Notebook
- Just
- Kotlin
- LLVM
- Less
- Lua
- MDX
- Makefile
- Markdown
- Mustache
- Nginx
- Nim
- Nix
- Nunjucks
- OCaml
- Objective-C
- Odin
- PHP
- PLpgSQL
- Pascal
- Perl
- PostScript
- PowerShell
- Processing
- Prolog
- Pug
- PureScript
- Python
- QML
- R
- Racket
- ReScript
- Reason
- RenderScript
- Rich Text Format
- Roff
- Ruby
- Rust
- SCSS
- SVG
- Sass
- Scala
- Shell
- Smalltalk
- Smarty
- Starlark
- Svelte
- Swift
- TeX
- Twig
- TypeScript
- V
- VCL
- Vala
- Vim Script
- Vue
- WebAssembly
- Wren
- XSLT
- Xojo
- Yacc
- Zig
Starred repositories
The "Python Machine Learning (1st edition)" book code repository and info resource
Kubernetes community content
A curated list of applied machine learning and data science notebooks and libraries across different industries (by @firmai)
Plain python implementations of basic machine learning algorithms
A collection of tutorials and examples for solving and understanding machine learning and pattern classification tasks
Useful functions, tutorials, and other Python-related things
Open Content for self-directed learning in data science
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style" (http://arxiv.org/abs/1508.06576) in Keras 2.0+
lecture notes for cyberwizard workshops
This is a collection of iPython notebooks from my course on data mining. Data used in the notebooks can be downloaded from the given links in the notebooks.
An IPython Notebook I use to crunch my Financius data