forked from golang/debug
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdominator.go
427 lines (364 loc) · 9.71 KB
/
dominator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gocore
import (
"fmt"
"io"
)
// Code liberally adapted from cmd/compile/internal/ssa/dom.go and
// x/tools/go/ssa/dom.go.
//
// We use the algorithm described in Lengauer & Tarjan. 1979. A fast
// algorithm for finding dominators in a flowgraph.
// http://doi.acm.org/10.1145/357062.357071
//
// We also apply the optimizations to SLT described in Georgiadis et
// al, Finding Dominators in Practice, JGAA 2006,
// http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf
// to avoid the need for buckets of size > 1.
// Vertex name, as used in the papers.
// 0 -> the pseudo-root, a made-up object that parents all the GC roots.
// 1...nRoots -> a root, found at p.rootIdx[#-1]
// nRoots+1... -> an object, with object index # - nRoots - 1
type vName int
const pseudoRoot vName = 0
// Vertex number, assigned in the DFS traversal in step 1.
type vNumber int
type ltDom struct {
p *Process
// mapping from object ID to object
objs []Object
// number -> name
vertices []vName
// name -> parent name
parents []vName
// name -> vertex number before step 2 or semidominator number after.
semis []vNumber
// name -> ancestor name
ancestor []vName
labels []vName
// name -> dominator name
idom []vName
nVertices, nRoots int
}
type dominators struct {
p *Process
// mapping from object ID to object
objs []Object
// name -> dominator name
idom []vName
// Reverse dominator tree edges, stored just like the ones in Process. name -> child name.
ridx []int
redge []vName
// Retained size for each vertex. name -> retained size.
size []int64
}
func (p *Process) calculateDominators() *dominators {
lt := runLT(p)
d := dominators{p: p, idom: lt.idom, objs: lt.objs}
lt = ltDom{}
d.reverse()
d.calcSize(p)
return &d
}
func runLT(p *Process) ltDom {
p.typeHeap()
p.reverseEdges()
nVertices := 1 + len(p.rootIdx) + p.nObj
lt := ltDom{
p: p,
nRoots: len(p.rootIdx),
nVertices: nVertices,
objs: make([]Object, p.nObj),
vertices: make([]vName, nVertices),
parents: make([]vName, nVertices),
semis: make([]vNumber, nVertices),
ancestor: make([]vName, nVertices),
labels: make([]vName, nVertices),
idom: make([]vName, nVertices),
}
// TODO: increment all the names and use 0 as the uninitialized value.
for i := range lt.semis {
lt.semis[i] = -1
}
for i := range lt.ancestor {
lt.ancestor[i] = -1
}
for i := range lt.labels {
lt.labels[i] = vName(i)
}
lt.initialize()
lt.calculate()
return lt
}
// initialize implements step 1 of LT.
func (d *ltDom) initialize() {
type workItem struct {
name vName
parentName vName
}
// Initialize objs for mapping from object index back to Object.
i := 0
d.p.ForEachObject(func(x Object) bool {
d.objs[i] = x
i++
return true
})
// Add roots to the work stack, essentially pretending to visit
// the pseudo-root, numbering it 0.
d.semis[pseudoRoot] = 0
d.parents[pseudoRoot] = -1
d.vertices[0] = pseudoRoot
var work []workItem
for i := 1; i < 1+d.nRoots; i++ {
work = append(work, workItem{name: vName(i), parentName: 0})
}
n := vNumber(1) // 0 was the pseudo-root.
// Build the spanning tree, assigning vertex numbers to each object
// and initializing semi and parent.
for len(work) != 0 {
item := work[len(work)-1]
work = work[:len(work)-1]
if d.semis[item.name] != -1 {
continue
}
d.semis[item.name] = n
d.parents[item.name] = item.parentName
d.vertices[n] = item.name
n++
visitChild := func(_ int64, child Object, _ int64) bool {
childIdx, _ := d.p.findObjectIndex(d.p.Addr(child))
work = append(work, workItem{name: vName(childIdx + d.nRoots + 1), parentName: item.name})
return true
}
root, object := d.findVertexByName(item.name)
if root != nil {
d.p.ForEachRootPtr(root, visitChild)
} else {
d.p.ForEachPtr(object, visitChild)
}
}
}
// findVertexByName returns the root/object named by n, or nil,0 for the pseudo-root.
func (d *ltDom) findVertexByName(n vName) (*Root, Object) {
if n == 0 {
return nil, 0
}
if int(n) < len(d.p.rootIdx)+1 {
return d.p.rootIdx[n-1], 0
}
return nil, d.objs[int(n)-len(d.p.rootIdx)-1]
}
func (d *dominators) findVertexByName(n vName) (*Root, Object) {
if n == 0 {
return nil, 0
}
if int(n) < len(d.p.rootIdx)+1 {
return d.p.rootIdx[n-1], 0
}
return nil, d.objs[int(n)-len(d.p.rootIdx)-1]
}
// calculate runs the main part of LT.
func (d *ltDom) calculate() {
// name -> bucket (a name), per Georgiadis.
buckets := make([]vName, d.nVertices)
for i := range buckets {
buckets[i] = vName(i)
}
for i := vNumber(len(d.vertices)) - 1; i > 0; i-- {
w := d.vertices[i]
// Step 3. Implicitly define the immediate dominator of each node.
for v := buckets[w]; v != w; v = buckets[v] {
u := d.eval(v)
if d.semis[u] < d.semis[v] {
d.idom[v] = u
} else {
d.idom[v] = w
}
}
// Step 2. Compute the semidominators of all nodes.
root, obj := d.findVertexByName(w)
// This loop never visits the pseudo-root.
if root != nil {
u := d.eval(pseudoRoot)
if d.semis[u] < d.semis[w] {
d.semis[w] = d.semis[u]
}
} else {
d.p.ForEachReversePtr(obj, func(x Object, r *Root, _, _ int64) bool {
var v int
if r != nil {
v = d.p.findRootIndex(r) + 1
} else {
v, _ = d.p.findObjectIndex(d.p.Addr(x))
v += d.nRoots + 1
}
u := d.eval(vName(v))
if d.semis[u] < d.semis[w] {
d.semis[w] = d.semis[u]
}
return true
})
}
d.link(d.parents[w], w)
if d.parents[w] == d.vertices[d.semis[w]] {
d.idom[w] = d.parents[w]
} else {
buckets[w] = buckets[d.vertices[d.semis[w]]]
buckets[d.vertices[d.semis[w]]] = w
}
}
// The final 'Step 3' is now outside the loop.
for v := buckets[pseudoRoot]; v != pseudoRoot; v = buckets[v] {
d.idom[v] = pseudoRoot
}
// Step 4. Explicitly define the immediate dominator of each
// node, in preorder.
for _, w := range d.vertices[1:] {
if d.idom[w] != d.vertices[d.semis[w]] {
d.idom[w] = d.idom[d.idom[w]]
}
}
}
// eval is EVAL from the papers.
func (d *ltDom) eval(v vName) vName {
if d.ancestor[v] == -1 {
return v
}
d.compress(v)
return d.labels[v]
}
// compress is COMPRESS from the papers.
func (d *ltDom) compress(v vName) {
var stackBuf [20]vName
stack := stackBuf[:0]
for d.ancestor[d.ancestor[v]] != -1 {
stack = append(stack, v)
v = d.ancestor[v]
}
for len(stack) != 0 {
v := stack[len(stack)-1]
stack = stack[:len(stack)-1]
if d.semis[d.labels[d.ancestor[v]]] < d.semis[d.labels[v]] {
d.labels[v] = d.labels[d.ancestor[v]]
}
d.ancestor[v] = d.ancestor[d.ancestor[v]]
}
}
// link is LINK from the papers.
func (d *ltDom) link(v, w vName) {
d.ancestor[w] = v
}
// reverse computes and stores reverse edges for each vertex.
func (d *dominators) reverse() {
// One inbound edge per vertex. Then we need an extra so that you can
// always look at ridx[i+1], and another for working storage while
// populating redge.
cnt := make([]int, len(d.idom)+2)
// Fill cnt[2:] with the number of outbound edges for each vertex.
tmp := cnt[2:]
for _, idom := range d.idom {
tmp[idom]++
}
// Make tmp cumulative. After this step, cnt[1:] is what we want for
// ridx, but the next step messes it up.
var n int
for idx, c := range tmp {
n += c
tmp[idx] = n
}
// Store outbound edges in redge, using cnt[1:] as the index to store
// the next edge for each vertex. After we're done, everything's been
// shifted over one, and cnt is ridx.
redge := make([]vName, len(d.idom))
tmp = cnt[1:]
for i, idom := range d.idom {
redge[tmp[idom]] = vName(i)
tmp[idom]++
}
d.redge, d.ridx = redge, cnt[:len(cnt)-1]
}
type dfsMode int
const (
down dfsMode = iota
up
)
// calcSize calculates the total retained size for each vertex.
func (d *dominators) calcSize(p *Process) {
d.size = make([]int64, len(d.idom))
type workItem struct {
v vName
mode dfsMode
}
work := []workItem{{pseudoRoot, down}}
for len(work) > 0 {
item := &work[len(work)-1]
kids := d.redge[d.ridx[item.v]:d.ridx[item.v+1]]
if item.mode == down && len(kids) != 0 {
item.mode = up
for _, w := range kids {
if w == 0 {
// bogus self-edge. Ignore.
continue
}
work = append(work, workItem{w, down})
}
continue
}
work = work[:len(work)-1]
root, obj := d.findVertexByName(item.v)
var size int64
switch {
case item.v == pseudoRoot:
break
case root != nil:
size += root.Type.Size
default:
size += p.Size(obj)
}
for _, w := range kids {
size += d.size[w]
}
d.size[item.v] = size
}
}
func (d *ltDom) dot(w io.Writer) {
fmt.Fprintf(w, "digraph %s {\nrankdir=\"LR\"\n", "dominators")
for number, name := range d.vertices {
var label string
root, obj := d.findVertexByName(name)
switch {
case name == 0:
label = "pseudo-root"
case root != nil:
typeName := root.Type.Name
if len(typeName) > 30 {
typeName = typeName[:30]
}
label = fmt.Sprintf("root %s %#x (type %s)", root.Name, root.Addr, typeName)
default:
typ, _ := d.p.Type(obj)
var typeName string
if typ != nil {
typeName = typ.Name
if len(typeName) > 30 {
typeName = typeName[:30]
}
}
label = fmt.Sprintf("object %#x (type %s)", obj, typeName)
}
fmt.Fprintf(w, "\t%v [label=\"name #%04v, number #%04v: %s\"]\n", name, name, number, label)
}
fmt.Fprint(w, "\n\n")
for v, parent := range d.parents {
fmt.Fprintf(w, "\t%v -> %v [style=\"solid\"]\n", parent, v)
}
for v, idom := range d.idom {
fmt.Fprintf(w, "\t%v -> %v [style=\"bold\"]\n", idom, v)
}
for v, sdom := range d.semis {
fmt.Fprintf(w, "\t%v -> %v [style=\"dotted\"]\n", v, d.vertices[sdom])
}
fmt.Fprint(w, "}\n")
}