forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trt_utils.hpp
211 lines (194 loc) · 5.95 KB
/
trt_utils.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include "Status.hpp"
#include "TensorOrWeights.hpp"
#include "onnx2trt.hpp"
#include <NvInfer.h>
#include <algorithm>
#include <cassert>
#include <cmath>
namespace onnx2trt
{
inline int getDtypeSize(nvinfer1::DataType trtDtype)
{
switch (trtDtype)
{
case nvinfer1::DataType::kFLOAT: return 4;
case nvinfer1::DataType::kINT8: return 1;
case nvinfer1::DataType::kHALF: return 2;
case nvinfer1::DataType::kINT32:
return 4;
// TRT does not support booleans as a native type, so we treat them like int32 values.
case nvinfer1::DataType::kBOOL:
return 4;
// TODO: Some sort of error handling
default: return -1;
}
}
inline nvinfer1::Dims insert_dim(nvinfer1::Dims const& dims, int idx, int value)
{
assert(idx < dims.nbDims + 1);
nvinfer1::Dims new_dims;
new_dims.nbDims = dims.nbDims + 1;
for (int i = 0; i < idx; ++i)
{
new_dims.d[i] = dims.d[i];
}
new_dims.d[idx] = value;
for (int i = idx + 1; i < new_dims.nbDims; ++i)
{
new_dims.d[i] = dims.d[i - 1];
}
return new_dims;
}
inline nvinfer1::Dims remove_dim(nvinfer1::Dims const& dims, int idx)
{
assert(idx < dims.nbDims);
nvinfer1::Dims new_dims;
new_dims.nbDims = dims.nbDims - 1;
for (int i = 0; i < idx; ++i)
{
new_dims.d[i] = dims.d[i];
}
for (int i = idx; i < new_dims.nbDims; ++i)
{
new_dims.d[i] = dims.d[i + 1];
}
// Special case for scalar result (i.e., there was only one dim originally)
if (new_dims.nbDims == 0)
{
new_dims.nbDims = 1;
new_dims.d[0] = 1;
}
return new_dims;
}
// Adds unitary dimensions on the left
inline nvinfer1::Dims expand_dims(nvinfer1::Dims const& dims, int ndim_new)
{
assert(dims.nbDims <= ndim_new);
nvinfer1::Dims new_dims;
new_dims.nbDims = ndim_new;
int j = 0;
for (; j < ndim_new - dims.nbDims; ++j)
{
new_dims.d[j] = 1;
}
for (int i = 0; i < dims.nbDims; ++i, ++j)
{
new_dims.d[j] = dims.d[i];
}
return new_dims;
}
inline nvinfer1::Permutation remove_first_dim(nvinfer1::Permutation const& perm)
{
assert(perm.order[0] == 0);
nvinfer1::Permutation new_perm;
int ndim = nvinfer1::Dims::MAX_DIMS;
for (int i = 0; i < ndim - 1; ++i)
{
new_perm.order[i] = perm.order[i + 1] - 1;
}
return new_perm;
}
inline nvinfer1::Dims squeeze_trailing_dims(nvinfer1::Dims const& dims)
{
nvinfer1::Dims new_dims = dims;
// Note: TRT requires at least one dimension, so we don't squeeze [1]->[]
while (new_dims.nbDims > 1 && new_dims.d[new_dims.nbDims - 1] == 1)
{
--new_dims.nbDims;
}
return new_dims;
}
inline nvinfer1::Dims squeeze_leading_dims(const nvinfer1::Dims& dims)
{
nvinfer1::Dims newDims;
// Copy dims only if a non-1 has been seen already.
bool non1Seen{false};
newDims.nbDims = std::copy_if(dims.d, dims.d + dims.nbDims, newDims.d,
[&non1Seen](int x) {
non1Seen = (x != 1) ? true : non1Seen;
return non1Seen;
})
- newDims.d;
return newDims;
}
inline nvinfer1::DimsHW operator-(nvinfer1::DimsHW dims)
{
return nvinfer1::DimsHW(-dims.h(), -dims.w());
}
// Note: These are used for checking beg_padding == end_padding
inline bool operator==(nvinfer1::Dims const& a, nvinfer1::Dims const& b)
{
if (a.nbDims != b.nbDims)
{
return false;
}
for (int i = 0; i < a.nbDims; ++i)
{
if (a.d[i] != b.d[i])
{
return false;
}
}
return true;
}
inline bool operator!=(nvinfer1::Dims const& a, nvinfer1::Dims const& b)
{
return !(a == b);
}
inline nvinfer1::DimsHW get_DimsHW_from_CHW(nvinfer1::Dims dims)
{
assert(dims.nbDims == 3);
return nvinfer1::DimsHW(dims.d[1], dims.d[2]);
}
inline TensorOrWeights identity(IImporterContext* ctx, TensorOrWeights input)
{
if (input.is_weights())
{
return input;
}
else
{
auto* layer = ctx->network()->addIdentity(input.tensor());
if (!layer)
{
return nullptr;
}
return layer->getOutput(0);
}
}
inline ::ONNX_NAMESPACE::TensorProto_DataType trtDataTypeToONNX(nvinfer1::DataType dt)
{
switch (dt)
{
case nvinfer1::DataType::kFLOAT: return ::ONNX_NAMESPACE::TensorProto::FLOAT;
case nvinfer1::DataType::kHALF: return ::ONNX_NAMESPACE::TensorProto::FLOAT16;
case nvinfer1::DataType::kINT32: return ::ONNX_NAMESPACE::TensorProto::INT32;
case nvinfer1::DataType::kINT8: return ::ONNX_NAMESPACE::TensorProto::INT8;
case nvinfer1::DataType::kBOOL: return ::ONNX_NAMESPACE::TensorProto::BOOL;
default: return ::ONNX_NAMESPACE::TensorProto_DataType_UNDEFINED;
}
throw std::runtime_error{"Unreachable"};
}
} // namespace onnx2trt