-
Notifications
You must be signed in to change notification settings - Fork 0
/
problem00012.py
64 lines (50 loc) · 1.45 KB
/
problem00012.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python
# Highly divisible triangular number
# Problem 12
# The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
# 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
# Let us list the factors of the first seven triangle numbers:
# 1: 1
# 3: 1,3
# 6: 1,2,3,6
# 10: 1,2,5,10
# 15: 1,3,5,15
# 21: 1,3,7,21
# 28: 1,2,4,7,14,28
# We can see that 28 is the first triangle number to have over five divisors.
# What is the value of the first triangle number to have over five hundred divisors?
from functools import reduce
import math
def memoize(f):
memo = {}
def helper(x):
if x not in memo:
memo[x] = f(x)
return memo[x]
return helper
def natural_numbers():
n = 1
while True:
n += 1
yield n
@memoize
def triangle_number(n):
if n == 1:
return 1
return triangle_number(n - 1) + n
def factors(n):
def _add_factors(xs, y):
if n / y != y:
xs.append(n / y)
xs.append(y)
return xs
return reduce(_add_factors, filter(lambda x: n % x == 0, xrange(1, int(math.sqrt(n)) + 1)), [])
def triangle_divisors(n):
for i in natural_numbers():
t = triangle_number(i)
f = factors(t)
cnt = len(f)
if cnt > n:
print(i, t, 'factors', f, 'cnt', cnt)
return i
print(triangle_divisors(500))