Skip to content

jonbarron/robust_loss_pytorch

Repository files navigation

A General and Adaptive Robust Loss Function

This directory contains reference code for the paper A General and Adaptive Robust Loss Function, Jonathan T. Barron CVPR, 2019

The code is implemented in Pytorch, and is a port of the TensorFlow implementation at: https://github.com/google-research/google-research/tree/master/robust_loss. The required packages are listed in requirements.txt.

If you'd like this loss, include general.py or adaptive.py and call the loss function. general.py implements the "general" form of the loss, which assumes you are prepared to set and tune hyperparameters yourself, and adaptive.py implements the "adaptive" form of the loss, which tries to adapt the hyperparameters automatically and also includes support for imposing losses in different image representations. The probability distribution underneath the adaptive loss is implemented in distribution.py.

About

A pytorch port of google-research/google-research/robust_loss/

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •