forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rational.jl
448 lines (369 loc) · 13.2 KB
/
rational.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Rational{T<:Integer} <: Real
Rational number type, with numerator and denominator of type `T`.
"""
struct Rational{T<:Integer} <: Real
num::T
den::T
function Rational{T}(num::Integer, den::Integer) where T<:Integer
num == den == zero(T) && throw(ArgumentError("invalid rational: zero($T)//zero($T)"))
num2, den2 = (sign(den) < 0) ? divgcd(-num, -den) : divgcd(num, den)
new(num2, den2)
end
end
Rational(n::T, d::T) where {T<:Integer} = Rational{T}(n,d)
Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)
Rational(n::Integer) = Rational(n,one(n))
function divgcd(x::Integer,y::Integer)
g = gcd(x,y)
div(x,g), div(y,g)
end
"""
//(num, den)
Divide two integers or rational numbers, giving a [`Rational`](@ref) result.
# Examples
```jldoctest
julia> 3 // 5
3//5
julia> (3 // 5) // (2 // 1)
3//10
```
"""
//(n::Integer, d::Integer) = Rational(n,d)
function //(x::Rational, y::Integer)
xn,yn = divgcd(x.num,y)
xn//checked_mul(x.den,yn)
end
function //(x::Integer, y::Rational)
xn,yn = divgcd(x,y.num)
checked_mul(xn,y.den)//yn
end
function //(x::Rational, y::Rational)
xn,yn = divgcd(x.num,y.num)
xd,yd = divgcd(x.den,y.den)
checked_mul(xn,yd)//checked_mul(xd,yn)
end
//(x::Complex, y::Real) = complex(real(x)//y,imag(x)//y)
//(x::Number, y::Complex) = x*conj(y)//abs2(y)
//(X::AbstractArray, y::Number) = X .// y
function show(io::IO, x::Rational)
show(io, numerator(x))
print(io, "//")
show(io, denominator(x))
end
function read(s::IO, ::Type{Rational{T}}) where T<:Integer
r = read(s,T)
i = read(s,T)
r//i
end
function write(s::IO, z::Rational)
write(s,numerator(z),denominator(z))
end
Rational{T}(x::Rational) where {T<:Integer} = Rational{T}(convert(T,x.num), convert(T,x.den))
Rational{T}(x::Integer) where {T<:Integer} = Rational{T}(convert(T,x), convert(T,1))
Rational(x::Rational) = x
Bool(x::Rational) = x==0 ? false : x==1 ? true :
throw(InexactError(:Bool, Bool, x)) # to resolve ambiguity
(::Type{T})(x::Rational) where {T<:Integer} = (isinteger(x) ? convert(T, x.num) :
throw(InexactError(Symbol(string(T)), T, x)))
AbstractFloat(x::Rational) = float(x.num)/float(x.den)
function (::Type{T})(x::Rational{S}) where T<:AbstractFloat where S
P = promote_type(T,S)
convert(T, convert(P,x.num)/convert(P,x.den))
end
function Rational{T}(x::AbstractFloat) where T<:Integer
r = rationalize(T, x, tol=0)
x == convert(typeof(x), r) || throw(InexactError(:Rational, Rational{T}, x))
r
end
Rational(x::Float64) = Rational{Int64}(x)
Rational(x::Float32) = Rational{Int}(x)
big(z::Complex{<:Rational{<:Integer}}) = Complex{Rational{BigInt}}(z)
promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:Integer} = Rational{promote_type(T,S)}
promote_rule(::Type{Rational{T}}, ::Type{Rational{S}}) where {T<:Integer,S<:Integer} = Rational{promote_type(T,S)}
promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:AbstractFloat} = promote_type(T,S)
widen(::Type{Rational{T}}) where {T} = Rational{widen(T)}
"""
rationalize([T<:Integer=Int,] x; tol::Real=eps(x))
Approximate floating point number `x` as a [`Rational`](@ref) number with components
of the given integer type. The result will differ from `x` by no more than `tol`.
# Examples
```jldoctest
julia> rationalize(5.6)
28//5
julia> a = rationalize(BigInt, 10.3)
103//10
julia> typeof(numerator(a))
BigInt
```
"""
function rationalize(::Type{T}, x::AbstractFloat, tol::Real) where T<:Integer
if tol < 0
throw(ArgumentError("negative tolerance $tol"))
end
isnan(x) && return T(x)//one(T)
isinf(x) && return (x < 0 ? -one(T) : one(T))//zero(T)
p, q = (x < 0 ? -one(T) : one(T)), zero(T)
pp, qq = zero(T), one(T)
x = abs(x)
a = trunc(x)
r = x-a
y = one(x)
tolx = oftype(x, tol)
nt, t, tt = tolx, zero(tolx), tolx
ia = np = nq = zero(T)
# compute the successive convergents of the continued fraction
# np // nq = (p*a + pp) // (q*a + qq)
while r > nt
try
ia = convert(T,a)
np = checked_add(checked_mul(ia,p),pp)
nq = checked_add(checked_mul(ia,q),qq)
p, pp = np, p
q, qq = nq, q
catch e
isa(e,InexactError) || isa(e,OverflowError) || rethrow(e)
return p // q
end
# naive approach of using
# x = 1/r; a = trunc(x); r = x - a
# is inexact, so we store x as x/y
x, y = y, r
a, r = divrem(x,y)
# maintain
# x0 = (p + (-1)^i * r) / q
t, tt = nt, t
nt = a*t+tt
end
# find optimal semiconvergent
# smallest a such that x-a*y < a*t+tt
a = cld(x-tt,y+t)
try
ia = convert(T,a)
np = checked_add(checked_mul(ia,p),pp)
nq = checked_add(checked_mul(ia,q),qq)
return np // nq
catch e
isa(e,InexactError) || isa(e,OverflowError) || rethrow(e)
return p // q
end
end
rationalize(::Type{T}, x::AbstractFloat; tol::Real = eps(x)) where {T<:Integer} = rationalize(T, x, tol)::Rational{T}
rationalize(x::AbstractFloat; kvs...) = rationalize(Int, x; kvs...)
"""
numerator(x)
Numerator of the rational representation of `x`.
# Examples
```jldoctest
julia> numerator(2//3)
2
julia> numerator(4)
4
```
"""
numerator(x::Integer) = x
numerator(x::Rational) = x.num
"""
denominator(x)
Denominator of the rational representation of `x`.
# Examples
```jldoctest
julia> denominator(2//3)
3
julia> denominator(4)
1
```
"""
denominator(x::Integer) = one(x)
denominator(x::Rational) = x.den
sign(x::Rational) = oftype(x, sign(x.num))
signbit(x::Rational) = signbit(x.num)
copysign(x::Rational, y::Real) = copysign(x.num,y) // x.den
copysign(x::Rational, y::Rational) = copysign(x.num,y.num) // x.den
typemin(::Type{Rational{T}}) where {T<:Integer} = -one(T)//zero(T)
typemax(::Type{Rational{T}}) where {T<:Integer} = one(T)//zero(T)
isinteger(x::Rational) = x.den == 1
-(x::Rational) = (-x.num) // x.den
function -(x::Rational{T}) where T<:BitSigned
x.num == typemin(T) && throw(OverflowError("rational numerator is typemin(T)"))
(-x.num) // x.den
end
function -(x::Rational{T}) where T<:Unsigned
x.num != zero(T) && throw(OverflowError("cannot negate unsigned number"))
x
end
for (op,chop) in ((:+,:checked_add), (:-,:checked_sub),
(:rem,:rem), (:mod,:mod))
@eval begin
function ($op)(x::Rational, y::Rational)
xd, yd = divgcd(x.den, y.den)
Rational(($chop)(checked_mul(x.num,yd), checked_mul(y.num,xd)), checked_mul(x.den,yd))
end
end
end
function *(x::Rational, y::Rational)
xn,yd = divgcd(x.num,y.den)
xd,yn = divgcd(x.den,y.num)
checked_mul(xn,yn) // checked_mul(xd,yd)
end
/(x::Rational, y::Rational) = x//y
/(x::Rational, y::Complex{<:Union{Integer,Rational}}) = x//y
inv(x::Rational) = Rational(x.den, x.num)
fma(x::Rational, y::Rational, z::Rational) = x*y+z
==(x::Rational, y::Rational) = (x.den == y.den) & (x.num == y.num)
<( x::Rational, y::Rational) = x.den == y.den ? x.num < y.num :
widemul(x.num,y.den) < widemul(x.den,y.num)
<=(x::Rational, y::Rational) = x.den == y.den ? x.num <= y.num :
widemul(x.num,y.den) <= widemul(x.den,y.num)
==(x::Rational, y::Integer ) = (x.den == 1) & (x.num == y)
==(x::Integer , y::Rational) = y == x
<( x::Rational, y::Integer ) = x.num < widemul(x.den,y)
<( x::Integer , y::Rational) = widemul(x,y.den) < y.num
<=(x::Rational, y::Integer ) = x.num <= widemul(x.den,y)
<=(x::Integer , y::Rational) = widemul(x,y.den) <= y.num
function ==(x::AbstractFloat, q::Rational)
if isfinite(x)
(count_ones(q.den) == 1) & (x*q.den == q.num)
else
x == q.num/q.den
end
end
==(q::Rational, x::AbstractFloat) = x == q
for rel in (:<,:<=,:cmp)
for (Tx,Ty) in ((Rational,AbstractFloat), (AbstractFloat,Rational))
@eval function ($rel)(x::$Tx, y::$Ty)
if isnan(x)
$(rel == :cmp ? :(return isnan(y) ? 0 : 1) :
:(return false))
end
if isnan(y)
$(rel == :cmp ? :(return -1) :
:(return false))
end
xn, xp, xd = decompose(x)
yn, yp, yd = decompose(y)
if xd < 0
xn = -xn
xd = -xd
end
if yd < 0
yn = -yn
yd = -yd
end
xc, yc = widemul(xn,yd), widemul(yn,xd)
xs, ys = sign(xc), sign(yc)
if xs != ys
return ($rel)(xs,ys)
elseif xs == 0
# both are zero or ±Inf
return ($rel)(xn,yn)
end
xb, yb = ndigits0z(xc,2) + xp, ndigits0z(yc,2) + yp
if xb == yb
xc, yc = promote(xc,yc)
if xp > yp
xc = (xc<<(xp-yp))
else
yc = (yc<<(yp-xp))
end
return ($rel)(xc,yc)
else
return xc > 0 ? ($rel)(xb,yb) : ($rel)(yb,xb)
end
end
end
end
# needed to avoid ambiguity between ==(x::Real, z::Complex) and ==(x::Rational, y::Number)
==(z::Complex , x::Rational) = isreal(z) & (real(z) == x)
==(x::Rational, z::Complex ) = isreal(z) & (real(z) == x)
for op in (:div, :fld, :cld)
@eval begin
function ($op)(x::Rational, y::Integer )
xn,yn = divgcd(x.num,y)
($op)(xn, checked_mul(x.den,yn))
end
function ($op)(x::Integer, y::Rational)
xn,yn = divgcd(x,y.num)
($op)(checked_mul(xn,y.den), yn)
end
function ($op)(x::Rational, y::Rational)
xn,yn = divgcd(x.num,y.num)
xd,yd = divgcd(x.den,y.den)
($op)(checked_mul(xn,yd), checked_mul(xd,yn))
end
end
end
trunc(::Type{T}, x::Rational) where {T} = convert(T,div(x.num,x.den))
floor(::Type{T}, x::Rational) where {T} = convert(T,fld(x.num,x.den))
ceil(::Type{T}, x::Rational) where {T} = convert(T,cld(x.num,x.den))
function round(::Type{T}, x::Rational{Tr}, ::RoundingMode{:Nearest}) where {T,Tr}
if denominator(x) == zero(Tr) && T <: Integer
throw(DivideError())
elseif denominator(x) == zero(Tr)
return convert(T, copysign(one(Tr)//zero(Tr), numerator(x)))
end
q,r = divrem(numerator(x), denominator(x))
s = q
if abs(r) >= abs((denominator(x)-copysign(Tr(4), numerator(x))+one(Tr)+iseven(q))>>1 + copysign(Tr(2), numerator(x)))
s += copysign(one(Tr),numerator(x))
end
convert(T, s)
end
round(::Type{T}, x::Rational) where {T} = round(T, x, RoundNearest)
function round(::Type{T}, x::Rational{Tr}, ::RoundingMode{:NearestTiesAway}) where {T,Tr}
if denominator(x) == zero(Tr) && T <: Integer
throw(DivideError())
elseif denominator(x) == zero(Tr)
return convert(T, copysign(one(Tr)//zero(Tr), numerator(x)))
end
q,r = divrem(numerator(x), denominator(x))
s = q
if abs(r) >= abs((denominator(x)-copysign(Tr(4), numerator(x))+one(Tr))>>1 + copysign(Tr(2), numerator(x)))
s += copysign(one(Tr),numerator(x))
end
convert(T, s)
end
function round(::Type{T}, x::Rational{Tr}, ::RoundingMode{:NearestTiesUp}) where {T,Tr}
if denominator(x) == zero(Tr) && T <: Integer
throw(DivideError())
elseif denominator(x) == zero(Tr)
return convert(T, copysign(one(Tr)//zero(Tr), numerator(x)))
end
q,r = divrem(numerator(x), denominator(x))
s = q
if abs(r) >= abs((denominator(x)-copysign(Tr(4), numerator(x))+one(Tr)+(numerator(x)<0))>>1 + copysign(Tr(2), numerator(x)))
s += copysign(one(Tr),numerator(x))
end
convert(T, s)
end
function round(::Type{T}, x::Rational{Bool}) where T
if denominator(x) == false && (T <: Union{Integer, Bool})
throw(DivideError())
end
convert(T, x)
end
round(::Type{T}, x::Rational{Bool}, ::RoundingMode{:Nearest}) where {T} = round(T, x)
round(::Type{T}, x::Rational{Bool}, ::RoundingMode{:NearestTiesAway}) where {T} = round(T, x)
round(::Type{T}, x::Rational{Bool}, ::RoundingMode{:NearestTiesUp}) where {T} = round(T, x)
round(::Type{T}, x::Rational{Bool}, ::RoundingMode) where {T} = round(T, x)
trunc(x::Rational{T}) where {T} = Rational(trunc(T,x))
floor(x::Rational{T}) where {T} = Rational(floor(T,x))
ceil(x::Rational{T}) where {T} = Rational(ceil(T,x))
round(x::Rational{T}) where {T} = Rational(round(T,x))
function ^(x::Rational, n::Integer)
n >= 0 ? power_by_squaring(x,n) : power_by_squaring(inv(x),-n)
end
^(x::Number, y::Rational) = x^(y.num/y.den)
^(x::T, y::Rational) where {T<:AbstractFloat} = x^convert(T,y)
^(z::Complex{T}, p::Rational) where {T<:Real} = z^convert(typeof(one(T)^p), p)
^(z::Complex{<:Rational}, n::Bool) = n ? z : one(z) # to resolve ambiguity
function ^(z::Complex{<:Rational}, n::Integer)
n >= 0 ? power_by_squaring(z,n) : power_by_squaring(inv(z),-n)
end
iszero(x::Rational) = iszero(numerator(x))
isone(x::Rational) = isone(numerator(x)) & isone(denominator(x))
function lerpi(j::Integer, d::Integer, a::Rational, b::Rational)
((d-j)*a)/d + (j*b)/d
end
float(::Type{Rational{T}}) where {T<:Integer} = float(T)