forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreinterpretarray.jl
202 lines (183 loc) · 6.43 KB
/
reinterpretarray.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Test
isdefined(Main, :OffsetArrays) || @eval Main include("testhelpers/OffsetArrays.jl")
using .Main.OffsetArrays
A = Int64[1, 2, 3, 4]
B = Complex{Int64}[5+6im, 7+8im, 9+10im]
# getindex
@test reinterpret(Complex{Int64}, A) == [1 + 2im, 3 + 4im]
@test reinterpret(Float64, A) == reinterpret.(Float64, A)
@test reinterpret(NTuple{3, Int64}, B) == [(5,6,7),(8,9,10)]
# setindex
let Ac = copy(A), Bc = copy(B)
reinterpret(Complex{Int64}, Ac)[2] = -1 - 2im
@test Ac == [1, 2, -1, -2]
reinterpret(NTuple{3, Int64}, Bc)[2] = (4,5,6)
@test Bc == Complex{Int64}[5+6im, 7+4im, 5+6im]
reinterpret(NTuple{3, Int64}, Bc)[1] = (1,2,3)
@test Bc == Complex{Int64}[1+2im, 3+4im, 5+6im]
A1 = reinterpret(Float64, A)
A2 = reinterpret(Complex{Float64}, A)
A1[1] = 1.0
@test real(A2[1]) == 1.0
end
# same-size reinterpret where one of the types is non-primitive
let a = NTuple{4,UInt8}[(0x01,0x02,0x03,0x04)]
@test reinterpret(Float32, a)[1] == reinterpret(Float32, 0x04030201)
reinterpret(Float32, a)[1] = 2.0
@test reinterpret(Float32, a)[1] == 2.0
end
# ensure that reinterpret arrays aren't erroneously classified as strided
let A = reshape(1:20, 5, 4)
V = view(A, :, :)
R = reinterpret(Int32, V)
R2 = reinterpret(Int32, A)
@test !(R isa StridedArray)
@test !(R2 isa StridedArray)
@test R * ones(4, 5) == R2 * ones(4,5) == copy(R) * ones(4,5) == copy(R2) * ones(4,5)
end
# but ensure that strided views of strided reinterpret arrays are still strided
let A = collect(reshape(1:20, 5, 4))
R = reinterpret(Int32, A)
@test R isa StridedArray
@test view(R, :, :) isa StridedArray
@test reshape(R, :) isa StridedArray
end
@testset "strides" begin
a = rand(10)
b = view(a,2:2:10)
A = rand(10,10)
B = view(A, 2:2:10, 2:2:10)
@test strides(a) == (1,)
@test strides(b) == (2,)
@test strides(A) == (1,10)
@test strides(B) == (2,20)
for M in (a, b, A, B)
@inferred strides(M)
strides_M = strides(M)
for (i, _stride) in enumerate(collect(strides_M))
@test _stride == stride(M, i)
end
end
end
# IndexStyle
let a = fill(1.0, 5, 3)
r = reinterpret(Int64, a)
@test @inferred(IndexStyle(r)) == IndexLinear()
fill!(r, 2)
@test all(a .=== reinterpret(Float64, [Int64(2)])[1])
@test all(r .=== Int64(2))
for badinds in (0, 16, (0,1), (1,0), (6,3), (5,4))
@test_throws BoundsError r[badinds...]
@test_throws BoundsError r[badinds...] = -2
end
for goodinds in (1, 15, (1,1), (5,3))
r[goodinds...] = -2
@test r[goodinds...] == -2
end
r = reinterpret(Int32, a)
@test @inferred(IndexStyle(r)) == IndexLinear()
fill!(r, 3)
@test all(a .=== reinterpret(Float64, [(Int32(3), Int32(3))])[1])
@test all(r .=== Int32(3))
for badinds in (0, 31, (0,1), (1,0), (11,3), (10,4))
@test_throws BoundsError r[badinds...]
@test_throws BoundsError r[badinds...] = -3
end
for goodinds in (1, 30, (1,1), (10,3))
r[goodinds...] = -3
@test r[goodinds...] == -3
end
r = reinterpret(Int64, view(a, 1:2:5, :))
@test @inferred(IndexStyle(r)) == IndexCartesian()
fill!(r, 4)
@test all(a[1:2:5,:] .=== reinterpret(Float64, [Int64(4)])[1])
@test all(r .=== Int64(4))
for badinds in (0, 10, (0,1), (1,0), (4,3), (3,4))
@test_throws BoundsError r[badinds...]
@test_throws BoundsError r[badinds...] = -4
end
for goodinds in (1, 9, (1,1), (3,3))
r[goodinds...] = -4
@test r[goodinds...] == -4
end
r = reinterpret(Int32, view(a, 1:2:5, :))
@test @inferred(IndexStyle(r)) == IndexCartesian()
fill!(r, 5)
@test all(a[1:2:5,:] .=== reinterpret(Float64, [(Int32(5), Int32(5))])[1])
@test all(r .=== Int32(5))
for badinds in (0, 19, (0,1), (1,0), (7,3), (6,4))
@test_throws BoundsError r[badinds...]
@test_throws BoundsError r[badinds...] = -5
end
for goodinds in (1, 18, (1,1), (6,3))
r[goodinds...] = -5
@test r[goodinds...] == -5
end
end
# Error on reinterprets that would expose padding
struct S1
a::Int8
b::Int64
end
struct S2
a::Int16
b::Int64
end
A1 = S1[S1(0, 0)]
A2 = S2[S2(0, 0)]
@test reinterpret(S1, A2)[1] == S1(0, 0)
@test_throws Base.PaddingError (reinterpret(S1, A2)[1] = S2(1, 2))
@test_throws Base.PaddingError reinterpret(S2, A1)[1]
reinterpret(S2, A1)[1] = S2(1, 2)
@test A1[1] == S1(1, 2)
# Unconventional axes
let a = [0.1 0.2; 0.3 0.4], at = reshape([(i,i+1) for i = 1:2:8], 2, 2)
v = OffsetArray(a, (-1, 1))
r = reinterpret(Int64, v)
@test axes(r) === axes(v)
@test r[0,2] === reinterpret(Int64, v[0,2])
@test r[1,2] === reinterpret(Int64, v[1,2])
@test r[0,3] === reinterpret(Int64, v[0,3])
@test r[1,3] === reinterpret(Int64, v[1,3])
@test_throws ArgumentError("cannot reinterpret a `Float64` array to `UInt32` when the first axis is Base.IdentityUnitRange(0:1). Try reshaping first.") reinterpret(UInt32, v)
v = OffsetArray(a, (0, 1))
r = reinterpret(UInt32, v)
axsv = axes(v)
@test axes(r) === (oftype(axsv[1], 1:4), axsv[2])
for i = 1:2
rval = reinterpret(Tuple{UInt32,UInt32}, [v[i,2]])[1]
@test r[2i-1,2] == rval[1]
@test r[2i,2] == rval[2]
rval = reinterpret(Tuple{UInt32,UInt32}, [v[i,3]])[1]
@test r[2i-1,3] == rval[1]
@test r[2i,3] == rval[2]
end
r[4,2] = 7
@test r[4,2] === UInt32(7)
@test a[2,1] === reinterpret(Float64, [0x33333333, UInt32(7)])[1]
offsetvt = (-2, 4)
vt = OffsetArray(at, offsetvt)
istr = string(Int)
@test_throws ArgumentError("cannot reinterpret a `Tuple{$istr,$istr}` array to `$istr` when the first axis is Base.IdentityUnitRange(-1:0). Try reshaping first.") reinterpret(Int, vt)
vt = reshape(vt, 1:1, axes(vt)...)
r = reinterpret(Int, vt)
@test r == OffsetArray(reshape(1:8, 2, 2, 2), (0, offsetvt...))
end
@testset "potentially aliased copies" begin
buffer = UInt8[1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0]
mid = length(buffer) ÷ 2
x1 = reinterpret(Int64, @view buffer[1:mid])
x2 = reinterpret(Int64, @view buffer[mid+1:end])
x1 .= x2
@test x1 == x2 == [2]
@test x1[] === x2[] === Int64(2)
end
# Test 0-dimensional Arrays
A = zeros(UInt32)
B = reinterpret(Int32,A)
@test size(B) == ()
@test axes(B) == ()
B[] = Int32(5)
@test B[] === Int32(5)
@test A[] === UInt32(5)