forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpr.jl
429 lines (366 loc) · 11.2 KB
/
expr.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# This file is a part of Julia. License is MIT: https://julialang.org/license
## symbols ##
"""
gensym([tag])
Generates a symbol which will not conflict with other variable names.
"""
gensym() = ccall(:jl_gensym, Ref{Symbol}, ())
gensym(s::String) = ccall(:jl_tagged_gensym, Ref{Symbol}, (Ptr{UInt8}, Int32), s, sizeof(s))
gensym(ss::String...) = map(gensym, ss)
gensym(s::Symbol) =
ccall(:jl_tagged_gensym, Ref{Symbol}, (Ptr{UInt8}, Int32), s, ccall(:strlen, Csize_t, (Ptr{UInt8},), s))
"""
@gensym
Generates a gensym symbol for a variable. For example, `@gensym x y` is transformed into
`x = gensym("x"); y = gensym("y")`.
"""
macro gensym(names...)
blk = Expr(:block)
for name in names
push!(blk.args, :($(esc(name)) = gensym($(string(name)))))
end
push!(blk.args, :nothing)
return blk
end
## expressions ##
function copy(e::Expr)
n = Expr(e.head)
n.args = copy_exprargs(e.args)
return n
end
# copy parts of an AST that the compiler mutates
copy_exprs(@nospecialize(x)) = x
copy_exprs(x::Expr) = copy(x)
function copy_exprs(x::PhiNode)
new_values = Vector{Any}(undef, length(x.values))
for i = 1:length(x.values)
isassigned(x.values, i) || continue
new_values[i] = copy_exprs(x.values[i])
end
return PhiNode(copy(x.edges), new_values)
end
function copy_exprs(x::PhiCNode)
new_values = Vector{Any}(undef, length(x.values))
for i = 1:length(x.values)
isassigned(x.values, i) || continue
new_values[i] = copy_exprs(x.values[i])
end
return PhiCNode(new_values)
end
copy_exprargs(x::Array{Any,1}) = Any[copy_exprs(x[i]) for i in 1:length(x)]
# create copies of the CodeInfo definition, and any mutable fields
function copy(c::CodeInfo)
cnew = ccall(:jl_copy_code_info, Ref{CodeInfo}, (Any,), c)
cnew.code = copy_exprargs(cnew.code)
cnew.slotnames = copy(cnew.slotnames)
cnew.slotflags = copy(cnew.slotflags)
cnew.codelocs = copy(cnew.codelocs)
cnew.linetable = copy(cnew.linetable)
cnew.ssaflags = copy(cnew.ssaflags)
ssavaluetypes = cnew.ssavaluetypes
ssavaluetypes isa Vector{Any} && (cnew.ssavaluetypes = copy(ssavaluetypes))
return cnew
end
==(x::Expr, y::Expr) = x.head === y.head && isequal(x.args, y.args)
==(x::QuoteNode, y::QuoteNode) = isequal(x.value, y.value)
"""
macroexpand(m::Module, x; recursive=true)
Take the expression `x` and return an equivalent expression with all macros removed (expanded)
for executing in module `m`.
The `recursive` keyword controls whether deeper levels of nested macros are also expanded.
This is demonstrated in the example below:
```julia-repl
julia> module M
macro m1()
42
end
macro m2()
:(@m1())
end
end
M
julia> macroexpand(M, :(@m2()), recursive=true)
42
julia> macroexpand(M, :(@m2()), recursive=false)
:(#= REPL[16]:6 =# M.@m1)
```
"""
function macroexpand(m::Module, @nospecialize(x); recursive=true)
if recursive
ccall(:jl_macroexpand, Any, (Any, Any), x, m)
else
ccall(:jl_macroexpand1, Any, (Any, Any), x, m)
end
end
"""
@macroexpand
Return equivalent expression with all macros removed (expanded).
There are differences between `@macroexpand` and [`macroexpand`](@ref).
* While [`macroexpand`](@ref) takes a keyword argument `recursive`, `@macroexpand`
is always recursive. For a non recursive macro version, see [`@macroexpand1`](@ref).
* While [`macroexpand`](@ref) has an explicit `module` argument, `@macroexpand` always
expands with respect to the module in which it is called.
This is best seen in the following example:
```julia-repl
julia> module M
macro m()
1
end
function f()
(@macroexpand(@m),
macroexpand(M, :(@m)),
macroexpand(Main, :(@m))
)
end
end
M
julia> macro m()
2
end
@m (macro with 1 method)
julia> M.f()
(1, 1, 2)
```
With `@macroexpand` the expression expands where `@macroexpand` appears in the code (module `M` in the example).
With `macroexpand` the expression expands in the module given as the first argument.
"""
macro macroexpand(code)
return :(macroexpand($__module__, $(QuoteNode(code)), recursive=true))
end
"""
@macroexpand1
Non recursive version of [`@macroexpand`](@ref).
"""
macro macroexpand1(code)
return :(macroexpand($__module__, $(QuoteNode(code)), recursive=false))
end
## misc syntax ##
"""
Core.eval(m::Module, expr)
Evaluate an expression in the given module and return the result.
"""
Core.eval
"""
@inline
Give a hint to the compiler that this function is worth inlining.
Small functions typically do not need the `@inline` annotation,
as the compiler does it automatically. By using `@inline` on bigger functions,
an extra nudge can be given to the compiler to inline it.
This is shown in the following example:
```julia
@inline function bigfunction(x)
#=
Function Definition
=#
end
```
"""
macro inline(ex)
esc(isa(ex, Expr) ? pushmeta!(ex, :inline) : ex)
end
"""
@noinline
Prevents the compiler from inlining a function.
Small functions are typically inlined automatically.
By using `@noinline` on small functions, auto-inlining can be
prevented. This is shown in the following example:
```julia
@noinline function smallfunction(x)
#=
Function Definition
=#
end
```
"""
macro noinline(ex)
esc(isa(ex, Expr) ? pushmeta!(ex, :noinline) : ex)
end
"""
@pure ex
@pure(ex)
`@pure` gives the compiler a hint for the definition of a pure function,
helping for type inference.
A pure function can only depend on immutable information.
This also means a `@pure` function cannot use any global mutable state, including
generic functions. Calls to generic functions depend on method tables which are
mutable global state.
Use with caution, incorrect `@pure` annotation of a function may introduce
hard to identify bugs. Double check for calls to generic functions.
"""
macro pure(ex)
esc(isa(ex, Expr) ? pushmeta!(ex, :pure) : ex)
end
"""
@propagate_inbounds
Tells the compiler to inline a function while retaining the caller's inbounds context.
"""
macro propagate_inbounds(ex)
if isa(ex, Expr)
pushmeta!(ex, :inline)
pushmeta!(ex, :propagate_inbounds)
esc(ex)
else
esc(ex)
end
end
"""
@polly
Tells the compiler to apply the polyhedral optimizer Polly to a function.
"""
macro polly(ex)
esc(isa(ex, Expr) ? pushmeta!(ex, :polly) : ex)
end
## some macro utilities ##
function pushmeta!(ex::Expr, sym::Symbol, args::Any...)
if isempty(args)
tag = sym
else
tag = Expr(sym, args...)
end
inner = ex
while inner.head === :macrocall
inner = inner.args[end]::Expr
end
idx, exargs = findmeta(inner)
if idx != 0
push!(exargs[idx].args, tag)
else
body::Expr = inner.args[2]
pushfirst!(body.args, Expr(:meta, tag))
end
ex
end
popmeta!(body, sym) = _getmeta(body, sym, true)
peekmeta(body, sym) = _getmeta(body, sym, false)
function _getmeta(body::Expr, sym::Symbol, delete::Bool)
body.head === :block || return false, []
_getmeta(body.args, sym, delete)
end
_getmeta(arg, sym, delete::Bool) = (false, [])
function _getmeta(body::Array{Any,1}, sym::Symbol, delete::Bool)
idx, blockargs = findmeta_block(body, args -> findmetaarg(args,sym)!=0)
if idx == 0
return false, []
end
metaargs = blockargs[idx].args
i = findmetaarg(blockargs[idx].args, sym)
if i == 0
return false, []
end
ret = isa(metaargs[i], Expr) ? (metaargs[i]::Expr).args : []
if delete
deleteat!(metaargs, i)
isempty(metaargs) && deleteat!(blockargs, idx)
end
true, ret
end
# Find index of `sym` in a meta expression argument list, or 0.
function findmetaarg(metaargs, sym)
for i = 1:length(metaargs)
arg = metaargs[i]
if (isa(arg, Symbol) && (arg::Symbol) == sym) ||
(isa(arg, Expr) && (arg::Expr).head == sym)
return i
end
end
return 0
end
function is_short_function_def(ex)
ex.head === :(=) || return false
while length(ex.args) >= 1 && isa(ex.args[1], Expr)
(ex.args[1].head === :call) && return true
(ex.args[1].head === :where || ex.args[1].head === :(::)) || return false
ex = ex.args[1]
end
return false
end
function findmeta(ex::Expr)
if ex.head === :function || is_short_function_def(ex)
body::Expr = ex.args[2]
body.head === :block || error(body, " is not a block expression")
return findmeta_block(ex.args)
end
error(ex, " is not a function expression")
end
findmeta(ex::Array{Any,1}) = findmeta_block(ex)
function findmeta_block(exargs, argsmatch=args->true)
for i = 1:length(exargs)
a = exargs[i]
if isa(a, Expr)
if (a::Expr).head === :meta && argsmatch((a::Expr).args)
return i, exargs
elseif (a::Expr).head === :block
idx, exa = findmeta_block(a.args, argsmatch)
if idx != 0
return idx, exa
end
end
end
end
return 0, []
end
remove_linenums!(ex) = ex
function remove_linenums!(ex::Expr)
if ex.head === :block || ex.head === :quote
# remove line number expressions from metadata (not argument literal or inert) position
filter!(ex.args) do x
isa(x, Expr) && x.head === :line && return false
isa(x, LineNumberNode) && return false
return true
end
end
for subex in ex.args
subex isa Expr && remove_linenums!(subex)
end
return ex
end
function remove_linenums!(src::CodeInfo)
src.codelocs .= 0
length(src.linetable) > 1 && resize!(src.linetable, 1)
return src
end
macro generated()
return Expr(:generated)
end
"""
@generated f
@generated(f)
`@generated` is used to annotate a function which will be generated.
In the body of the generated function, only types of arguments can be read
(not the values). The function returns a quoted expression evaluated when the
function is called. The `@generated` macro should not be used on functions mutating
the global scope or depending on mutable elements.
See [Metaprogramming](@ref) for further details.
## Example:
```julia
julia> @generated function bar(x)
if x <: Integer
return :(x ^ 2)
else
return :(x)
end
end
bar (generic function with 1 method)
julia> bar(4)
16
julia> bar("baz")
"baz"
```
"""
macro generated(f)
if isa(f, Expr) && (f.head === :function || is_short_function_def(f))
body = f.args[2]
lno = body.args[1]
return Expr(:escape,
Expr(f.head, f.args[1],
Expr(:block,
lno,
Expr(:if, Expr(:generated),
body,
Expr(:block,
Expr(:meta, :generated_only),
Expr(:return, nothing))))))
else
error("invalid syntax; @generated must be used with a function definition")
end
end