|
| 1 | +""" |
| 2 | +Reading netCDF climate data and ploting it over the woldmap |
| 3 | +""" |
| 4 | +from os.path import join, dirname |
| 5 | +import numpy as np |
| 6 | +from netCDF4 import Dataset |
| 7 | +from matplotlib.pyplot import figure, imshow, show |
| 8 | +from mpl_toolkits.basemap import Basemap, shiftgrid |
| 9 | + |
| 10 | +def print_content_info(filename): |
| 11 | + """ Load a netcdf filename and print out the metadata of the file. |
| 12 | + This gives you something kinda similar to ncdump. |
| 13 | + TODO: make it closer to ncdump |
| 14 | + """ |
| 15 | + print "Opening netCDF file %s" % filename |
| 16 | + ncfile = Dataset(filename, mode='r') |
| 17 | + print "File format:", ncfile.file_format |
| 18 | + print "Metadata :" |
| 19 | + for attr in ncfile.ncattrs(): |
| 20 | + print " "*4, attr, ":", getattr(ncfile,attr) |
| 21 | + |
| 22 | + print "Structure of the content:", ncfile.groups.keys() |
| 23 | + for child_grp in ncfile.groups.values(): |
| 24 | + if child_grp.groups: |
| 25 | + print " "*8+"Content of %s is " % (child_grp, child_grp.groups) |
| 26 | + |
| 27 | + print "Dimensions defined at the top level:" |
| 28 | + for dim,val in ncfile.dimensions.items(): |
| 29 | + print " Dimension '%s' with length %s" % (dim, len(val)) |
| 30 | + for child_grp in ncfile.groups.values(): |
| 31 | + if child_grp.dimensions: |
| 32 | + for dim,val in ncfile.dimensions.items(): |
| 33 | + print " "*8+"Dimension '%s' with length %s" % (dim, len(val)) |
| 34 | + |
| 35 | + print "Variables in root group:" |
| 36 | + for var_name,val in ncfile.variables.items(): |
| 37 | + print " "*4+"Variable '%s' of shape %s" % (var_name, val.shape) |
| 38 | + if val.ncattrs(): |
| 39 | + print " "*4+"metadata: " |
| 40 | + for attr in val.ncattrs(): |
| 41 | + print " "*8, attr, ":", getattr(val,attr) |
| 42 | + |
| 43 | + if ncfile.groups.values(): |
| 44 | + print "Variables in other groups:" |
| 45 | + for child_grp in ncfile.groups.values(): |
| 46 | + if child_grp.variables: |
| 47 | + print " "*8+"Content of %: %s" % (child_grp, child_grp.variables) |
| 48 | + |
| 49 | + return ncfile |
| 50 | + |
| 51 | +def extract_data(ncfile, sliced = False, lat_0=None, lon_0=None, spot = False): |
| 52 | + """ Extract a given variable and return a 2D array. Slice it to only select |
| 53 | + the northern hemisphere if requested. If spot is True, extract only the |
| 54 | + value located at (lat,lon) |
| 55 | + """ |
| 56 | + relevant_array = ncfile.variables["207.210"] |
| 57 | + lat = ncfile.variables["latitude"] |
| 58 | + longit = ncfile.variables["longitude"] |
| 59 | + # The lat variables must be converted to a numpy array for the mask |
| 60 | + # to be an array instead of a boolean |
| 61 | + lat = np.array(lat) |
| 62 | + longit = np.array(longit) |
| 63 | + |
| 64 | + if sliced: |
| 65 | + slice_north_lat = (0 <= lat) & (lat <= 90) |
| 66 | + relevant_array = relevant_array[0, slice_north_lat, :] |
| 67 | + |
| 68 | + if spot: |
| 69 | + if lat_0 is None or lon_0 is None: |
| 70 | + raise ValueError("Requested the value in 1 location but didn't " |
| 71 | + "provide a latitude and a longitude") |
| 72 | + mask_lat = lat == lat_0 |
| 73 | + mask_long = longit == lon_0 |
| 74 | + relevant_array = relevant_array[0, mask_lat, mask_long] |
| 75 | + |
| 76 | + return np.squeeze(relevant_array) |
| 77 | + |
| 78 | +def plot_2Ddata(data_array): |
| 79 | + """ Plot of a 2D array. |
| 80 | + """ |
| 81 | + figure() |
| 82 | + imshow(data_array, origin = 'upper') |
| 83 | + return |
| 84 | + |
| 85 | +def plot_2Ddata_with_underlay(data_array, lons=None, lats=None): |
| 86 | + """ Plot of a 2D array on top of coast lines and country lines. |
| 87 | + """ |
| 88 | + figure() |
| 89 | + |
| 90 | + # Create the basemap instance and draw the continents |
| 91 | + # Basemap kw args: llcrnrlon = lower left corner longitude, and so on |
| 92 | + m = Basemap(llcrnrlon=-180, llcrnrlat=-90, urcrnrlon=180, urcrnrlat=90, projection='mill') |
| 93 | + m.drawcoastlines(linewidth=1.25) |
| 94 | + m.drawcountries(linewidth=0.5) |
| 95 | + #m.fillcontinents(color='0.8') |
| 96 | + m.drawparallels(np.arange(-90,91,20),labels=[1,1,0,0]) |
| 97 | + m.drawmeridians(np.arange(-180,180,60),labels=[0,0,0,1]) |
| 98 | + |
| 99 | + # Shift the data by 180 in longitude to center the map on longitude=0 |
| 100 | + data_array, lon_out = shiftgrid(180, data_array, lons) |
| 101 | + |
| 102 | + # Add the data, and place origin in upper left since the origin of the numpy |
| 103 | + # array corresponds tolat = 90 and long = 0 |
| 104 | + m.imshow(data_array, origin = 'upper') |
| 105 | + |
| 106 | + # More complex version that involves interpolation on a grid of points in |
| 107 | + # map coordinates. |
| 108 | + #nx = int((m.xmax-m.xmin)/500.)+1; ny = int((m.ymax-m.ymin)/500.)+1 |
| 109 | + #dat_array = m.transform_scalar(data_array, lons,lats,nx,ny) |
| 110 | + #m.imshow(dat_array, origin = 'upper') |
| 111 | + |
| 112 | + |
| 113 | + #figure() |
| 114 | + #m = Basemap(projection='ortho',lon_0=-105,lat_0=40) |
| 115 | + #m.drawcoastlines(linewidth=1.25) |
| 116 | + #m.drawcountries(linewidth=0.5) |
| 117 | + #dat_transformed = m.transform_scalar(data_array, |
| 118 | + |
| 119 | + return |
| 120 | + |
| 121 | +if __name__ == "__main__": |
| 122 | + # 1. Provide a quick description of the content of the file |
| 123 | + script_location = dirname(__file__) |
| 124 | + ncfile = print_content_info(join(script_location, "climate.nc")) |
| 125 | + |
| 126 | + # 2. Extract and plot the entire 2D array of data |
| 127 | + lat = ncfile.variables["latitude"][:] |
| 128 | + longit = ncfile.variables["longitude"][:] |
| 129 | + print "Latitude range:", lat[0], lat[-1] |
| 130 | + print "Longitude range:", longit[0], longit[-1] |
| 131 | + full_data_image = extract_data(ncfile) |
| 132 | + plot_2Ddata(full_data_image) |
| 133 | + |
| 134 | + # 3. Extract and plot the data that is in the northern hemisphere only, |
| 135 | + # and print the data in Paris (lat = 48N, long = 2E) |
| 136 | + sliced_data_image = extract_data(ncfile, sliced = True) |
| 137 | + plot_2Ddata(sliced_data_image) |
| 138 | + |
| 139 | + print "In Paris, the measured value is", extract_data(ncfile, lat_0=48, |
| 140 | + lon_0=2, spot = True) |
| 141 | + |
| 142 | + # 4. Underlay the map of the world under the global image |
| 143 | + #lat.sort() |
| 144 | + plot_2Ddata_with_underlay(full_data_image, longit, lat) |
| 145 | + |
| 146 | + show() |
0 commit comments