-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathmain.py
245 lines (230 loc) · 11.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import sys, os
os.environ[
"KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add path to system path
import argparse
import yaml
from pathlib import Path
import datetime
import gym
import torch.multiprocessing as mp
from config.config import GeneralConfig
from common.utils import get_logger, save_results, save_cfgs, plot_rewards, merge_class_attrs, all_seed, check_n_workers
from envs.register import register_env
class MergedConfig:
def __init__(self) -> None:
pass
class Main(object):
def __init__(self) -> None:
pass
def get_default_cfg(self):
self.general_cfg = GeneralConfig()
self.algo_name = self.general_cfg.algo_name
algo_mod = __import__(f"algos.{self.algo_name}.config", fromlist=['AlgoConfig'])
self.algo_cfg = algo_mod.AlgoConfig()
self.cfgs = {'general_cfg': self.general_cfg, 'algo_cfg': self.algo_cfg}
def print_cfgs(self, cfg):
''' print parameters
'''
cfg_dict = vars(cfg)
self.logger.info("Hyperparameters:")
self.logger.info(''.join(['='] * 80))
tplt = "{:^20}\t{:^20}\t{:^20}"
self.logger.info(tplt.format("Name", "Value", "Type"))
for k, v in cfg_dict.items():
print (k, v)
if v.__class__.__name__ == 'list':
v = str(v)
if v is None:
v = 'None'
if "support" in k:
v = str(v[0])
self.logger.info(tplt.format(k, v, str(type(v))))
self.logger.info(''.join(['='] * 80))
def process_yaml_cfg(self):
''' load yaml config
'''
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--yaml', default='presets/xxx.yaml', type=str,
help='the path of config file')
args = parser.parse_args()
if args.yaml is not None:
with open(args.yaml) as f:
load_cfg = yaml.load(f, Loader=yaml.FullLoader)
# load algo config
self.algo_name = load_cfg['general_cfg']['algo_name']
algo_mod = __import__(f"algos.{self.algo_name}.config",
fromlist=['AlgoConfig']) # dynamic loading of modules
self.algo_cfg = algo_mod.AlgoConfig()
self.cfgs = {'general_cfg': self.general_cfg, 'algo_cfg': self.algo_cfg}
# merge config
for cfg_type in self.cfgs:
if load_cfg[cfg_type] is not None:
for k, v in load_cfg[cfg_type].items():
setattr(self.cfgs[cfg_type], k, v)
def create_dirs(self, cfg):
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
task_dir = f"{curr_path}/tasks/{cfg.mode.capitalize()}_{cfg.env_name}_{cfg.algo_name}_{curr_time}"
setattr(cfg, 'task_dir', task_dir)
Path(cfg.task_dir).mkdir(parents=True, exist_ok=True)
model_dir = f"{task_dir}/models"
setattr(cfg, 'model_dir', model_dir)
res_dir = f"{task_dir}/results"
setattr(cfg, 'res_dir', res_dir)
log_dir = f"{task_dir}/logs"
setattr(cfg, 'log_dir', log_dir)
traj_dir = f"{task_dir}/traj"
setattr(cfg, 'traj_dir', traj_dir)
def envs_config(self, cfg):
''' configure environment
'''
register_env(cfg.env_name)
envs = [] # numbers of envs, equal to cfg.n_workers
for i in range(cfg.n_workers):
if cfg.render and i == 0: # only render the first env
env = gym.make(cfg.env_name, new_step_api=cfg.new_step_api, render_mode=cfg.render_mode) # create env
else:
env = gym.make(cfg.env_name, new_step_api=cfg.new_step_api) # create env
if cfg.wrapper is not None:
wrapper_class_path = cfg.wrapper.split('.')[:-1]
wrapper_class_name = cfg.wrapper.split('.')[-1]
env_wapper = __import__('.'.join(wrapper_class_path), fromlist=[wrapper_class_name])
env = getattr(env_wapper, wrapper_class_name)(env, new_step_api=cfg.new_step_api)
envs.append(env)
try: # state dimension
n_states = envs[0].observation_space.n # print(hasattr(env.observation_space, 'n'))
except AttributeError:
n_states = envs[0].observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
try:
n_actions = envs[0].action_space.n # action dimension
except AttributeError:
n_actions = envs[0].action_space.shape[0]
self.logger.info(f"action_bound: {abs(envs[0].action_space.low.item())}")
setattr(cfg, 'action_bound', abs(envs[0].action_space.low.item()))
setattr(cfg, 'action_space', envs[0].action_space)
self.logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
# update to cfg paramters
setattr(cfg, 'n_states', n_states)
setattr(cfg, 'n_actions', n_actions)
return envs
def evaluate(self, cfg, trainer, env, agent):
sum_eval_reward = 0
for _ in range(cfg.eval_eps):
_, eval_ep_reward, _ = trainer.test_one_episode(env, agent, cfg)
sum_eval_reward += eval_ep_reward
mean_eval_reward = sum_eval_reward / cfg.eval_eps
return mean_eval_reward
def single_run(self,cfg):
''' single process run
'''
envs = self.envs_config(cfg) # configure environment
env = envs[0]
agent_mod = __import__(f"algos.{cfg.algo_name}.agent", fromlist=['Agent'])
agent = agent_mod.Agent(cfg) # create agent
trainer_mod = __import__(f"algos.{cfg.algo_name}.trainer", fromlist=['Trainer'])
trainer = trainer_mod.Trainer() # create trainer
if cfg.load_checkpoint:
agent.load_model(f"tasks/{cfg.load_path}/models")
self.logger.info(f"Start {cfg.mode}ing!")
self.logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
rewards = [] # record rewards for all episodes
steps = [] # record steps for all episodes
if cfg.mode.lower() == 'train':
best_ep_reward = -float('inf')
for i_ep in range(cfg.train_eps):
agent, ep_reward, ep_step = trainer.train_one_episode(env, agent, cfg)
self.logger.info(f"Episode: {i_ep + 1}/{cfg.train_eps}, Reward: {ep_reward:.3f}, Step: {ep_step}")
rewards.append(ep_reward)
steps.append(ep_step)
# for _ in range
if (i_ep + 1) % cfg.eval_per_episode == 0:
mean_eval_reward = self.evaluate(cfg, trainer, env, agent)
if mean_eval_reward >= best_ep_reward: # update best reward
self.logger.info(f"Current episode {i_ep + 1} has the best eval reward: {mean_eval_reward:.3f}")
best_ep_reward = mean_eval_reward
agent.save_model(cfg.model_dir) # save models with best reward
# env.close()
elif cfg.mode.lower() == 'test':
for i_ep in range(cfg.test_eps):
agent, ep_reward, ep_step = trainer.test_one_episode(env, agent, cfg)
self.logger.info(f"Episode: {i_ep + 1}/{cfg.test_eps}, Reward: {ep_reward:.3f}, Step: {ep_step}")
rewards.append(ep_reward)
steps.append(ep_step)
agent.save_model(cfg.model_dir) # save models
# env.close()
elif cfg.mode.lower() == 'collect': # collect
memory = {'states': [], 'actions': [], 'rewards': [], 'terminals': []}
for i_ep in range(cfg.collect_eps):
total_reward, ep_state, ep_action, ep_reward, ep_terminal = trainer.collect_one_episode(env, agent, cfg)
memory['states'] += ep_state
memory['actions'] += ep_action
memory['rewards'] += ep_reward
memory['terminals'] += ep_terminal
self.logger.info(f'trajectories {i_ep + 1} collected, reward {total_reward}')
rewards.append(total_reward)
steps.append(cfg.max_steps)
env.close()
agent.save_traj(memory, self.traj_dir)
self.logger.info(f"trajectories saved to {self.traj_dir}")
self.logger.info(f"Finish {cfg.mode}ing!")
res_dic = {'episodes': range(len(rewards)), 'rewards': rewards, 'steps': steps}
save_results(res_dic, cfg.res_dir) # save results
save_cfgs(self.cfgs, cfg.task_dir) # save config
plot_rewards(rewards,
title=f"{cfg.mode.lower()}ing curve on {cfg.device} of {cfg.algo_name} for {cfg.env_name}",
fpath=cfg.res_dir)
def multi_run(self,cfg):
''' multi process run
'''
envs = self.envs_config(cfg) # configure environment
agent_mod = __import__(f"algos.{cfg.algo_name}.agent", fromlist=['Agent'])
share_agent = agent_mod.Agent(cfg,is_share_agent = True) # create agent
local_agents = [agent_mod.Agent(cfg) for _ in range(cfg.n_workers)]
worker_mod = __import__(f"algos.{cfg.algo_name}.trainer", fromlist=['Worker'])
mp.set_start_method("spawn") # 兼容windows和unix
if cfg.load_checkpoint:
share_agent.load_model(f"tasks/{cfg.load_path}/models")
for local_agent in local_agents:
local_agent.load_model(f"tasks/{cfg.load_path}/models")
self.logger.info(f"Start {cfg.mode}ing!")
self.logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
global_ep = mp.Value('i', 0)
global_best_reward = mp.Value('d', 0.)
global_r_que = mp.Queue()
workers = [worker_mod.Worker(cfg,i,share_agent,envs[i],local_agents[i],global_ep=global_ep,global_r_que=global_r_que,global_best_reward=global_best_reward) for i in range(cfg.n_workers)]
[w.start() for w in workers]
rewards = [] # record episode reward to plot
while True:
r = global_r_que.get()
if r is not None:
rewards.append(r)
else:
break
[w.join() for w in workers]
self.logger.info(f"Finish {cfg.mode}ing!")
res_dic = {'episodes': range(len(rewards)), 'rewards': rewards}
save_results(res_dic, cfg.res_dir) # save results
save_cfgs(self.cfgs, cfg.task_dir) # save config
plot_rewards(rewards,
title=f"{cfg.mode.lower()}ing curve on {cfg.device} of {cfg.algo_name} for {cfg.env_name}",
fpath=cfg.res_dir)
def run(self) -> None:
self.get_default_cfg() # get default config
self.process_yaml_cfg() # process yaml config
cfg = MergedConfig() # merge config
cfg = merge_class_attrs(cfg, self.cfgs['general_cfg'])
cfg = merge_class_attrs(cfg, self.cfgs['algo_cfg'])
self.create_dirs(cfg) # create dirs
self.logger = get_logger(cfg.log_dir) # create the logger
self.print_cfgs(cfg) # print the configuration
all_seed(seed=cfg.seed) # set seed == 0 means no seed
check_n_workers(cfg) # check n_workers
if cfg.n_workers == 1:
self.single_run(cfg)
else:
self.multi_run(cfg)
if __name__ == "__main__":
main = Main()
main.run()