-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriver2.f90
387 lines (318 loc) · 13.5 KB
/
driver2.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
! This program is a driver program to test the subroutines developed
! to compute the 35 objective functions and their first-, second- and
! third-order derivatives. It uses the classical routines proposed by
! Moré, Garbow, and Hillstrom (OBJFCN and GRDFCN, 1981), the HESFCN
! proposed by Averbukh, Figueroa, and Schlick (1994), and a new THRFCN
! to compute third-order derivatives.
!
! Just like the driver program that is contained in Algorithm 566 and
! its remark, this driver program uses Taylor expansions in order to
! verify the resulting error from third-order expansion, which
! indicates whether the first-, second- and third-order derivative of
! the objective function are correct. The explanation given below is
! very similar to the one given by the authors in the Algorithm 566.
!
! It is employed a Taylor expansion of the objective function around
! the given initial point X0 for each problem. The Taylor series
! is expanded at x0 + eps*y, where eps is a scalar and y is a random
! permutation vector.
!
! Denoting by g, H, and T the first-, second-, and third-order
! derivative of the objective function, respectively, and by Mv^a the
! result of applying the a-order tensor M to the vector v (e.g. gy is
! the dot product between the gradient and the vector y and Hy^2 is
! the dot product between the vector y and the matrix-vector product
! Hy - this is always a scalar), the Taylor expression of order 3
! around x0 is given by
!
! f(x0+eps*y) = f(x0) + eps*gy + (1/2) eps^2 Hy^2 + (1/6) eps^3 Ty^3
! + O(eps^4). (***)
!
! Notice that, if first-order Taylor expansion is employed, the error
! is O(eps^2) and we are able to check the correctness of the
! first-order derivative, and if second-order Taylor is employed, the
! error is O(eps^3) and we are able to check the correctness of the
! first- and second-order derivatives.
!
! The test is iterative and consist in dividing eps by 2 at each
! iteration. Then, the objective function is evaluated at x0+eps*y and
! the Taylor expansion (***) is computed for the given eps. The
! difference between them gives the error. Then, if the error for EPS
! is E1, the error for EPS/2 should be E1/4 if the first-order
! derivative is correct, E1/8 if the second-order derivative is
! correct and E1/16 if the third-order derivative is correct. The
! variable RATIO contains the OLD/NEW error, at each iteration.
!
! Therefore, this driver gives an output of RATIO until EPS and/or the
! difference between the old and new objective function value is very
! small.
!
! If RATIO tends to 4, 8, or 16, the first-order derivative is
! correct, the first- and second-order derivatives are correct, or the
! first-, second-, and third-order derivatives are correct.
program driver2
implicit none
! -----------------------------------------------------------------------
! DESCRIPTION OF LOCAL VARIABLES
! -----------------------------------------------------------------------
! macheps machine precision
! rk real number precision (change it according to set_parameter)
! -----------------------------------------------------------------------
! allocstat the status variable for allocate
! i,j counters
! n number of variables for the given problem
! ntries number of tries to test the derivatives
! problem the number of the problem to be considered
! sizehu the size of Hessian array
! sizetu the size of third derivative tensor array
! testder the order of the Taylor expansion to be used
! -----------------------------------------------------------------------
! diff the current difference between the real objective
! function value and the Taylor expansion
! diffold the previous difference between the real objective
! function value and the Taylor expansion
! eps the size of the step to give from the current point
! along the direction y
! epslim a small scalar to measure the "small variations"
! factor the factor to which the initial point should be scaled
! f0 the objective function value at the initial point
! fc the objective function value at x0+eps*y
! fold the objective function value at the previous point
! gy the first-order term of the Taylor expansion
! rand a random number obtained using drand
! ratio the ratio between old/new errors
! seed seed for random number generator
! t3y the third-order term of the Taylor expansion
! taylor the Taylor expansion of f at x0+eps*y
! yhy the second-order term of the Taylor expansion
! -----------------------------------------------------------------------
! pdim an integer array that contains n for each problem
! g0 the gradient of the objective function at x0
! hd0,hu0 the Hessian of the objective function at x0
! td0,tu0 the third-order derivative of the objective function at x0
! x0 the initial point of the problem
! xc x0+eps*y
! y a permutation vector
! -----------------------------------------------------------------------
! LOCAL PARAMETERS
integer, parameter :: rk = kind( 0.0d0 )
real(kind=rk), parameter :: macheps = epsilon( 0.0d0 )
! LOCAL SCALARS
integer :: allocstat, i, j, n, ntries, problem, sizehu, &
sizetu, testder
real(kind=rk) :: diff, diffold, eps, epslim, factor, f0, fc, fold, &
gy, ratio, rand, seed, t3y, taylor, yhy
! LOCAL ARRAYS
integer, dimension(18) :: pdim
real(kind=rk), allocatable, dimension(:) :: g0, hd0, hu0, td0, tu0, &
x0, xc, y
! Change ntries and testder as your need.
ntries = 2
testder = 3
! Dimension of the 18 unconstrained minimization problems
pdim = [ 3, 6, 3, 2, 3, 10, 6, 4, 4, 2, 4, 3, 10, 10, 12, 2, 4, 8 ]
! Seed for drand
seed = 123456.0_rk
open ( 50, file = "driver2.out" )
do problem = 1, 18
write ( 50, 110 ) problem
n = pdim(problem)
sizehu = n*(n-1)/2
sizetu = ( (n-1)*( (n-2)*(n-3) + 9*(n-2) + 12 ) )/6
! Allocate arrays
allocate( g0(n), hd0(n), hu0(sizehu), td0(n), tu0(sizetu), x0(n), &
xc(n), y(n), stat=allocstat )
if ( allocstat .ne. 0 ) then
write ( *, * ) "Allocation error in DRIVER2."
stop
end if
epslim = macheps * real( n*n ) * 1.d+2
! The factor by which the initial point is scaled
factor = 1.0d0
do i = 1, ntries
! Get the initial point for the given problem
call initpt( n, x0(1:n), problem, factor )
! Compute the objective function and its first-, second- and
! third-order derivatives for the initial point
call objfcn( n, x0(1:n), f0, problem )
call grdfcn( n, x0(1:n), g0(1:n), problem )
call hesfcn( n, x0(1:n), hd0(1:n), hu0(1:sizehu), problem )
call trdfcn( n, x0(1:n), td0(1:n), tu0(1:sizetu), problem )
! Obtain a random perturbation vector
do j = 1, n
! Generates a random number between -1 and 1
rand = 2.0_rk*drand( seed ) - 1.0_rk
! Defines the permutation vector
if ( x0(j) .ne. 0.0d0 ) then
y(j) = rand*x0(j)
else
y(j) = rand
end if
end do
! Print x0 in the screen
write ( 50, 130, advance='no' )
write ( 50, 100 ) ( x0(j), j = 1, n )
! Print the perturbation vector y in the screen
write ( 50, 140, advance='no' )
write ( 50, 100 ) ( y(j), j = 1, n )
! In the following code, we compute the first-, second-, and
! third-order terms of Taylor expansion. Depending on the value
! of ** testder **, which defines the order of the Taylor
! expansion chosen by the user, the respective term of the Taylor
! expansion is set to zero.
! Computes the first-order term of the Taylor expansion
gy = dot_product( g0(1:n), y(1:n) )
if ( testder .ge. 2 ) then
! Computes the second-order term of the Taylor expansion
call vmvprod( n, hd0(1:n), hu0(1:sizehu), y(1:n), yhy )
if ( testder .ge. 3 ) then
! Computes the third-order term of the Taylor expansion
call tvprod( n, td0(1:n), tu0(1:sizetu), y(1:n), t3y )
else
t3y = 0
end if
else
yhy = 0
t3y = 0
end if
eps = 0.5d0
diff = 0.0d0
fc = f0
write ( 50, 940 )
do
xc(1:n) = x0(1:n) + eps * y(1:n)
fold = fc
call objfcn( n, xc(1:n), fc, problem )
taylor = f0 &
+ eps * gy &
+ 0.5d0 * eps**2 * yhy &
+ eps**3/6.0d0 * t3y
diffold = diff
diff = fc - taylor
if ( abs( diff ) .lt. abs( epslim * fc ) ) then
write ( 50, 920 ) abs( diff ), abs( epslim * fc )
exit
end if
if ( abs( fc - fold ) .lt. abs( epslim * fold ) ) then
write ( 50, 930 ) abs( fc - fold ), abs( epslim * fold )
exit
end if
if ( diffold .eq. 0.0d0 .or. diff .eq. 0.0d0 ) then
write ( 50, 950 ) eps,fc,taylor,diff
else
ratio = diffold / diff
write ( 50, 950 ) eps,fc,taylor,diff,ratio
end if
eps = 0.5d0 * eps
if (eps .le. macheps) exit
end do
factor = 5.0d0 * factor
end do
! Deallocate arrays
deallocate( g0, hd0, hu0, td0, tu0, x0, xc, y, stat=allocstat )
if ( allocstat .ne. 0 ) then
write ( *, * ) "Deallocation error in DRIVER2."
stop
end if
end do
close ( 50 )
write ( *, * ) "Check file 'driver2.out' for driver2 output."
! NONEXECUTABLE STATEMENTS
100 format( 6( F10.4, 1X ) )
110 format( /, /, 90('='), /, 40X, 'PROBLEM ', I0, / )
130 format( /, 1X, 'X0 = ' )
140 format( /, 1X, 'Y = ' )
920 format(/T5,'diff is small (', 1PE16.8, ', less than ', 1PE16.8, &
' in absolute value)'/)
930 format(/T5,'change in function value is very small (', 1PE16.8, &
', less than ', 1PE16.8,' in absolute value)'/)
940 format(/,1X,74('-'),&
/,1X,7X,'EPS',15X,'F',10X,'TAYLOR',12X,'DIFF',11X,'RATIO', &
/,1X,74('-'))
950 format(1X,1PE10.4,1PE16.8,1PE16.8,1PE16.8,1PE16.8)
contains
! --------------------------------------------------------------------
subroutine vmvprod(n, diaga, uppera, x, y)
! vmvprod performs the vector-matrix-vector product x'*a*x, and
! stores the result in the scalar y. A is a symmetric nxn matrix,
! with diagonal elements stored in diaga and the strict upper
! triangular part stored by colums in uppera. x is a vector of
! length n.
! SCALAR ARGUMENTS
integer, intent(in) :: n
real(kind=rk), intent(out) :: y
! ARRAY ARGUMENTS
real(kind=rk), dimension(n*(n-1)/2), intent(in) :: uppera
real(kind=rk), dimension(n), intent(in) :: diaga, x
! LOCAL SCALARS
integer :: i, j, l
y = 0.0d0
do i = 1, n
y = y + diaga(i) * x(i) ** 2
end do
l = 1
do j = 1, n
do i = 1, j-1
y = y + 2.0d0 * uppera(l)*x(i)*x(j)
l = l + 1
end do
end do
end subroutine vmvprod
! --------------------------------------------------------------------
subroutine tvprod(n, diagt, uppert, x, y)
! tvprod performs the application of a three-dimensional array
! three times over x, and stores the result in the scalar y. The
! three-dimensional array is a symmetric n x n x n tensor, with
! diagonal elements stored in diagt and the strict upper part
! stored by columns in uppert. x is a vector of length n.
! SCALAR ARGUMENT
integer, intent(in) :: n
real(kind=rk), intent(out) :: y
! ARRAY ARGUMENTS
real(kind=rk), dimension(*), intent(in) :: uppert
real(kind=rk), dimension(n), intent(in) :: diagt, x
! LOCAL SCALARS
integer :: i, j, k, l
y = 0.0d0
l = 1
do k = 1, n
do j = 1, k
do i = 1, j
if ( i .eq. j .and. j .eq. k ) then
y = y + diagt(i) * x(i) ** 3
elseif ( i .ne. j .and. j .ne. k ) then
y = y + 6.0d0 * uppert(l)*x(i)*x(j)*x(k)
l = l + 1
else
y = y + 3.0d0 * uppert(l)*x(i)*x(j)*x(k)
l = l + 1
end if
end do
end do
end do
end subroutine tvprod
! --------------------------------------------------------------------
real(kind=rk) function drand(ix)
! This is the random number generator of Schrage:
!
! L. Schrage, A more portable Fortran random number generator, ACM
! Transactions on Mathematical Software 5 (1979), 132-138.
! SCALAR ARGUMENT
real(kind=rk), intent(inout) :: ix
! LOCAL SCALARS
real(kind=rk) :: a,p,b15,b16,xhi,xalo,leftlo,fhi,k
data a/16807.0_rk/,b15/32768.0_rk/,b16/65536.0_rk/,p/2147483647.0_rk/
xhi= ix/b16
xhi= xhi - dmod(xhi,1.0_rk)
xalo= (ix-xhi*b16)*a
leftlo= xalo/b16
leftlo= leftlo - dmod(leftlo,1.0_rk)
fhi= xhi*a + leftlo
k= fhi/b15
k= k - dmod(k,1.0_rk)
ix= (((xalo-leftlo*b16)-p)+(fhi-k*b15)*b16)+k
if (ix.lt.0) ix= ix + p
drand= ix*4.656612875e-10_rk
return
end function drand
end program driver2