-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaccuracy_assessment_zonal.py
131 lines (107 loc) · 5.42 KB
/
accuracy_assessment_zonal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 22 23:18:51 2022
@author: Johannes h. Uhl, University of Colorado Boulder, USA.
"""
import os,sys
## binary rasters, containing 1 and 0 only
test_tif = './data/test.tif' # test data
ref_tif = './data/reference.tif' # reference data
cellsize = 40 ## cell size of test_tif and ref_tif
rast_zonal=False ### requires arcpy
comp_accmeas=True ### calculates zonal accuracy measures
export_shp_vis_accmeas=True ### exports zonal accuracy measures to shapefile
zonal_datasets=[] ## a progression of one of more levels of zonal geometries, e.g., county, town, tract, block,...
zonal_datasets.append('./data/zones1.shp')
zonal_datasets.append('./data/zones2.shp')
levels=['zones1','zones2'] ## names for each zonal geometry level.
if rast_zonal:
import arcpy,os
from arcpy.sa import *
arcpy.CheckOutExtension("Spatial")
arcpy.env.compression = "LZW"
arcpy.env.overwriteOutput = True
arcpy.env.extent = test_tif
arcpy.env.outputCoordinateSystem = test_tif
arcpy.env.cellsize = test_tif
arcpy.env.snapRaster = test_tif
for zonal_dataset in zonal_datasets:
arcpy.PolygonToRaster_conversion(zonal_dataset,'FID',zonal_dataset.replace('.shp','.tif'),cellsize=cellsize)
print(zonal_dataset)
if comp_accmeas:
import gdal
import numpy as np
import accmeas
import pandas as pd
def calc_accmeas(df,level):
df['pcc'] = df.apply(lambda row : accmeas.pcc(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['nmi'] = df.apply(lambda row : accmeas.nmi(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['recall'] = df.apply(lambda row : accmeas.recall(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['precision'] = df.apply(lambda row : accmeas.precision(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['kappa'] = df.apply(lambda row : accmeas.kappa(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['f1'] = df.apply(lambda row : accmeas.f1(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['gmean'] = df.apply(lambda row : accmeas.gmean(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['iou'] = df.apply(lambda row : accmeas.iou(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['f1_adjusted'] = df.apply(lambda row : accmeas.f1_adjusted(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['abs_err'] = df.apply(lambda row : accmeas.abs_err(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['rel_err'] = df.apply(lambda row : accmeas.rel_err(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['mcc'] = df.apply(lambda row : accmeas.mcc(row.tp,row.tn,row.fp,row.fn), axis = 1)
df['refbudens']=100*(cellsize*cellsize/1000000.)*(df.tp+df.fn)/df.area_sqkm
df['testbudens']=100*(cellsize*cellsize/1000000.)*(df.tp+df.fp)/df.area_sqkm
df.to_csv('zonal_accmeas_%s.csv' %level,index=False)
test_arr = gdal.Open(test_tif).ReadAsArray()#.astype(np.int8)
ref_arr = gdal.Open(ref_tif).ReadAsArray()#.astype(np.int8)
cellsize=30 ## in m
print(test_arr.shape)
print(ref_arr.shape)
test_arr[test_arr==15]=-9999 ### set nodata (here: 15) to -9999
test_arr[test_arr==15]=-9999 ### set nodata (here: 15) to -9999
test_bin_arr=test_arr.flatten()
ref_bin_arr=ref_arr.flatten()
tps=np.zeros(ref_bin_arr.shape)
fps=np.zeros(ref_bin_arr.shape)
tns=np.zeros(ref_bin_arr.shape)
fns=np.zeros(ref_bin_arr.shape)
tps[np.logical_and(ref_bin_arr==1,test_bin_arr==1)]=1
fps[np.logical_and(ref_bin_arr==0,test_bin_arr==1)]=1
tns[np.logical_and(ref_bin_arr==0,test_bin_arr==0)]=1
fns[np.logical_and(ref_bin_arr==1,test_bin_arr==0)]=1
tempdf=pd.DataFrame()
tempdf['tp']=tps.astype(np.int8)
tempdf['fp']=fps.astype(np.int8)
tempdf['tn']=tns.astype(np.int8)
tempdf['fn']=fns.astype(np.int8)
for zonal_dataset in zonal_datasets:
level = levels[zonal_datasets.index(zonal_dataset)]
zone_id_tif = zonal_dataset.replace('.shp','.tif')
zone_arr = gdal.Open(zone_id_tif).ReadAsArray().flatten()
print(level,zone_arr.shape)
tempdf[level+'_id']=zone_arr
tempdf = tempdf.replace(-9999,np.nan)
tempdf = tempdf.dropna()
tempdf['area_sqkm'] = cellsize*cellsize/1000000.0
for level in levels:
aggr_cat_sum_df=tempdf.groupby(level+'_id')[['tp','fp','tn','fn','area_sqkm']].sum().reset_index()
calc_accmeas(aggr_cat_sum_df,level)
if export_shp_vis_accmeas:
import geopandas as gp
import pandas as pd
import matplotlib.pyplot as plt
for level in levels:
zonal_dataset = zonal_datasets[levels.index(level)]
gdf = gp.read_file(zonal_dataset)
gdf = gdf[['geometry']]
gdf['id'] = gdf.index+1
accmeas_csv='zonal_accmeas_%s.csv' %level
accmeas_df=pd.read_csv(accmeas_csv)
gdf = gdf.merge(accmeas_df,left_on='id',right_on='%s_id' %level)
###visualize exemplary accuracy measure as choropleth map
fig,ax=plt.subplots()
gdf.plot(column='iou',ax=ax) ### to be expanded
ax.set_axis_off()
fig = ax.get_figure()
plt.tight_layout(pad=0)
fig.savefig('./data/iou_%s.png' %level)
###export to shp
gdf.to_file(zonal_dataset.replace('.shp','_wFocalAccMeasures.shp'))
print(level)