-
Notifications
You must be signed in to change notification settings - Fork 59
/
pyramid_exactness.html
271 lines (237 loc) · 7.21 KB
/
pyramid_exactness.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
<html>
<head>
<title>
PYRAMID_EXACTNESS - Precision Test for Pyramid Quadrature Rules
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
PYRAMID_EXACTNESS <br> Precision Test for Pyramid Quadrature Rules
</h1>
<hr>
<p>
<b>PYRAMID_EXACTNESS</b>
is a FORTRAN90 program which
measures the precision of a quadrature rule defined on a pyramid.
</p>
<p>
The integration region is:
<pre>
- ( 1 - Z ) <= X <= 1 - Z
- ( 1 - Z ) <= Y <= 1 - Z
0 <= Z <= 1.
</pre>
When Z is zero, the integration region is a square lying in the (X,Y)
plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the
radius of the square diminishes, and when Z reaches 1, the square has
contracted to the single point (0,0,1).
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
<b>pyramid_exactness</b> <i>filename</i> <i>degree_max</i>
</blockquote>
where
<ul>
<li>
<i>filename</i> is the common prefix of the filenames containing the
abscissas and the weights of the quadrature rule.
</li>
<li>
<i>degree_max</i> is the maximum degree of the monomials to be checked.
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>PYRAMID_EXACTNESS</b> is available in
<a href = "../../cpp_src/pyramid_exactness/pyramid_exactness.html">a C++ version</a> and
<a href = "../../f_src/pyramid_exactness/pyramid_exactness.html">a FORTRAN90 version</a> and
<a href = "../../m_src/pyramid_exactness/pyramid_exactness.html">a MATLAB version.</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/felippa/felippa.html">
FELIPPA</a>,
a FORTRAN90 library which
defines quadrature rules for lines, triangles, quadrilaterals,
pyramids, wedges, tetrahedrons and hexahedrons.
</p>
<p>
<a href = "../../f_src/pyramid_rule/pyramid_rule.html">
PYRAMID_RULE</a>,
a FORTRAN90 program which
can compute a quadrature rule for the unit pyramid.
</p>
<p>
<a href = "../../datasets/quadrature_rules_pyramid/quadrature_rules_pyramid.html">
QUADRATURE_RULES_PYRAMID</a>,
a dataset directory which
contains quadrature rules for a pyramid with a square base.
</p>
<p>
<a href = "../../f_src/sphere_exactness/sphere_exactness.html">
SPHERE_EXACTNESS</a>,
a FORTRAN90 program which
tests the polynomial exactness of a quadrature rule for the unit sphere;
</p>
<p>
<a href = "../../f_src/tetrahedron_exactness/tetrahedron_exactness.html">
TETRAHEDRON_EXACTNESS</a>,
a FORTRAN90 program which
investigates the polynomial exactness of a quadrature rule for the tetrahedron.
</p>
<p>
<a href = "../../f_src/triangle_exactness/triangle_exactness.html">
TRIANGLE_EXACTNESS</a>,
a FORTRAN90 program which
investigates the polynomial exactness of a quadrature rule for the triangle.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Carlos Felippa,<br>
A compendium of FEM integration formulas for symbolic work,<br>
Engineering Computation,<br>
Volume 21, Number 8, 2004, pages 867-890.
</li>
<li>
Arthur Stroud,<br>
Approximate Calculation of Multiple Integrals,<br>
Prentice Hall, 1971,<br>
ISBN: 0130438936,<br>
LC: QA311.S85.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "pyramid_exactness.f90">pyramid_exactness.f90</a>, the source code.
</li>
<li>
<a href = "pyramid_exactness.sh">pyramid_exactness.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<b>PYRAMID_L3X3_J3</b> is a pyramid rule formed by a conical product of a
3x3 Legendre rule and an order 3 Jacobi rule.
<ul>
<li>
<a href = "pyramid_l3x3_j3_w.txt">pyramid_l3x3_j3_w.txt</a>,
the weight file.
</li>
<li>
<a href = "pyramid_l3x3_j3_x.txt">pyramid_l3x3_j3_x.txt</a>,
the abscissa file.
</li>
<li>
<a href = "pyramid_l3x3_j3_exactness.txt">pyramid_l3x3_j3_exactness.txt</a>,
the exactness file produced by the program.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>MAIN</b> is the main program for PYRAMID_EXACTNESS.
</li>
<li>
<b>CH_CAP</b> capitalizes a single character.
</li>
<li>
<b>CH_EQI</b> is a case insensitive comparison of two characters for equality.
</li>
<li>
<b>CH_TO_DIGIT</b> returns the integer value of a base 10 digit.
</li>
<li>
<b>COMP_NEXT</b> computes the compositions of the integer N into K parts.
</li>
<li>
<b>DTABLE_DATA_READ</b> reads data from a DTABLE file.
</li>
<li>
<b>DTABLE_HEADER_READ</b> reads the header from a DTABLE file.
</li>
<li>
<b>FILE_COLUMN_COUNT</b> counts the number of columns in the first line of a file.
</li>
<li>
<b>FILE_ROW_COUNT</b> counts the number of row records in a file.
</li>
<li>
<b>GET_UNIT</b> returns a free FORTRAN unit number.
</li>
<li>
<b>MONOMIAL_VALUE</b> evaluates a monomial.
</li>
<li>
<b>PYRA_UNIT_MONOMIAL:</b> monomial integral in a unit pyramid.
</li>
<li>
<b>PYRA_UNIT_VOLUME:</b> volume of a unit pyramid with square base.
</li>
<li>
<b>R8_CHOOSE</b> computes the binomial coefficient C(N,K) as an R8.
</li>
<li>
<b>R8_MOP</b> returns the I-th power of -1 as an R8.
</li>
<li>
<b>S_TO_I4</b> reads an I4 from a string.
</li>
<li>
<b>S_TO_R8</b> reads an R8 from a string.
</li>
<li>
<b>S_TO_R8VEC</b> reads an R8VEC from a string.
</li>
<li>
<b>S_WORD_COUNT</b> counts the number of "words" in a string.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 28 July 2009.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>