-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathihs.html
316 lines (270 loc) · 8.29 KB
/
ihs.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
<html>
<head>
<title>
IHS - Improved Distributed Hypercube Sampling
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
IHS <br> Improved Distributed Hypercube Sampling
</h1>
<hr>
<p>
<b>IHS</b>
is a FORTRAN90 library which
carries out the improved distributed hypercube sampling algorithm.
</p>
<p>
N Points in an M dimensional Latin hypercube are to be selected.
Each of the M coordinate dimensions is discretized to the values
1 through N. The points are to be chosen in such a way that
no two points have any coordinate value in common. This is
a standard Latin hypercube requirement, and there are many
solutions.
</p>
<p>
This algorithm differs in that it tries to pick a solution
which has the property that the points are "spread out"
as evenly as possible. It does this by determining an optimal
even spacing, and using the duplication factor D to allow it
to choose the best of the various options available to it
(the more duplication, the better chance of optimization).
</p>
<p>
One drawback to this algorithm is that it requires an internal
real distance array of dimension D * N * N. For a relatively moderate
problem with N = 1000, this can exceed the easily accessible
memory. Moreover, the program is inherently quadratic
in execution time as well as memory; the computation of the I-th
point in the set of N requires a consideration of the value of
the coordinates used up by the previous points, and the distances
from each of those points to the candidates for the next point.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>IHS</b> is available in
<a href = "../../cpp_src/ihs/ihs.html">a C++ version</a> and
<a href = "../../f_src/ihs/ihs.html">a FORTRAN90 version</a> and
<a href = "../../m_src/ihs/ihs.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/cvt/cvt.html">
CVT</a>,
a FORTRAN90 library which
computes elements of a Centroidal Voronoi Tessellation.
</p>
<p>
<a href = "../../f_src/faure/faure.html">
FAURE</a>,
a FORTRAN90 library which
computes elements of a Faure quasirandom sequence.
</p>
<p>
<a href = "../../f_src/grid/grid.html">
GRID</a>,
a FORTRAN90 library which
computes elements of a grid sequence.
</p>
<p>
<a href = "../../f_src/halton/halton.html">
HALTON</a>,
a FORTRAN90 library which
computes elements of a Halton quasirandom sequence.
</p>
<p>
<a href = "../../f_src/hammersley/hammersley.html">
HAMMERSLEY</a>,
a FORTRAN90 library which
computes elements of a Hammersley quasirandom sequence.
</p>
<p>
<a href = "../../f_src/hex_grid/hex_grid.html">
HEX_GRID</a>,
a FORTRAN90 library which
computes elements of a hexagonal grid dataset.
</p>
<p>
<a href = "../../f_src/hex_grid_angle/hex_grid_angle.html">
HEX_GRID_ANGLE</a>,
a FORTRAN90 library which
computes elements of an angled hexagonal grid dataset.
</p>
<p>
<a href = "../../f_src/latin_center/latin_center.html">
LATIN_CENTER</a>,
a FORTRAN90 library which
computes elements of a Latin Hypercube dataset, choosing center points.
</p>
<p>
<a href = "../../f_src/latin_edge/latin_edge.html">
LATIN_EDGE</a>,
a FORTRAN90 library which
computes elements of a Latin Hypercube dataset, choosing edge points.
</p>
<p>
<a href = "../../f_src/latin_random/latin_random.html">
LATIN_RANDOM</a>,
a FORTRAN90 library which
computes elements of a Latin Hypercube dataset, choosing points at random.
</p>
<p>
<a href = "../../f_src/lattice_rule/lattice_rule.html">
LATTICE_RULE</a>,
a FORTRAN90 library which
approximates multidimensional integrals using lattice rules.
</p>
<p>
<a href = "../../f_src/lcvt/lcvt.html">
LCVT</a>,
a FORTRAN90 library which
computes a latinized Centroidal Voronoi Tessellation.
</p>
<p>
<a href = "../../f_src/niederreiter2/niederreiter2.html">
NIEDERREITER2</a>,
a FORTRAN90 library which
computes elements of a Niederreiter quasirandom sequence using base 2.
</p>
<p>
<a href = "../../f_src/normal/normal.html">
NORMAL</a>,
a FORTRAN90 library which
computes elements of a sequence of pseudorandom normally distributed values.
</p>
<p>
<a href = "../../f_src/sobol/sobol.html">
SOBOL</a>,
a FORTRAN90 library which
computes elements of a Sobol quasirandom sequence.
</p>
<p>
<a href = "../../cpp_src/table_quality/table_quality.html">
TABLE_QUALITY</a>,
a C++ program which
measures the dispersion quality of points in a dataset read from a file.
</p>
<p>
<a href = "../../f_src/uniform/uniform.html">
UNIFORM</a>,
a FORTRAN90 library which
computes elements of a uniform pseudorandom sequence.
</p>
<p>
<a href = "../../f_src/van_der_corput/van_der_corput.html">
VAN_DER_CORPUT</a>,
a FORTRAN90 library which
computes elements of a 1D van der Corput sequence.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Brian Beachkofski, Ramana Grandhi,<br>
Improved Distributed Hypercube Sampling,<br>
American Institute of Aeronautics and Astronautics Paper 2002-1274.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "ihs.f90">ihs.f90</a>, the source code.
</li>
<li>
<a href = "ihs.sh">ihs.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "ihs_prb.f90">ihs_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "ihs_prb.sh">ihs_prb.sh</a>,
commands to compile and run the sample program.
</li>
<li>
<a href = "ihs_prb_output.txt">ihs_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>COVARIANCE</b> does a covariance calculation for IHS solutions.
</li>
<li>
<b>GET_SEED</b> returns a seed for the random number generator.
</li>
<li>
<b>GET_UNIT</b> returns a free FORTRAN unit number.
</li>
<li>
<b>I4_UNIFORM</b> returns a scaled pseudorandom I4.
</li>
<li>
<b>I4VEC_UNIFORM</b> returns a scaled pseudorandom I4VEC.
</li>
<li>
<b>IHS</b> implements the improved distributed hypercube sampling algorithm.
</li>
<li>
<b>IHS_WRITE</b> writes an IHS dataset to a file.
</li>
<li>
<b>R4_UNIFORM_01</b> returns a unit pseudorandom R4.
</li>
<li>
<b>R8_UNIFORM_01</b> returns a unit pseudorandom R8.
</li>
<li>
<b>R8VEC_STD</b> returns the standard deviation of a real vector.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
<li>
<b>TIMESTRING</b> writes the current YMDHMS date into a string.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 27 November 2006.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>