-
Notifications
You must be signed in to change notification settings - Fork 59
/
fekete.html
392 lines (349 loc) · 10.5 KB
/
fekete.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
<html>
<head>
<title>
FEKETE - High Order Interpolation and Quadrature in Triangles
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FEKETE <br> High Order Interpolation and Quadrature in Triangles
</h1>
<hr>
<p>
<b>FEKETE</b>
is a FORTRAN90 library which
can return information defining any of seven Fekete
rules for high order interpolation and quadrature in a triangle.
</p>
<p>
Fekete points can be defined for any region OMEGA. To define
the Fekete points for a given region, let Poly(N) be some finite
dimensional vector space of polynomials, such as all polynomials
of degree less than L, or all polynomials whose monomial terms
have total degree less than some value L.
</p>
<p>
Let P(1:M) be any basis for Poly(N). For this basis, the Fekete
points are defined as those points Z(1:M) which maximize the
determinant of the corresponding Vandermonde matrix:
<pre>
V = [ P1(Z1) P1(Z2) ... P1(ZM) ]
[ P2(Z1) P2(Z2) ... P2(ZM) ]
...
[ PM(ZM) P2(ZM) ... PM(ZM) ]
</pre>
</p>
<p>
On the triangle, it is known that some Fekete points will lie
on the boundary, and that on each side of the triangle, these
points will correspond to a set of Gauss-Lobatto points.
</p>
<p>
The seven rules have the following orders and precisions:
<table border="1" align="center">
<tr>
<th>Rule</th><th>Order</th><th>Precision</th>
</tr>
<tr>
<td>1</td><td> 10</td><td> 3</td>
</tr>
<tr>
<td>2</td><td> 28</td><td> 6</td>
</tr>
<tr>
<td>3</td><td> 55</td><td> 9</td>
</tr>
<tr>
<td>4</td><td> 91</td><td>12</td>
</tr>
<tr>
<td>5</td><td> 91</td><td>12</td>
</tr>
<tr>
<td>6</td><td>136</td><td>15</td>
</tr>
<tr>
<td>7</td><td>190</td><td>18</td>
</tr>
</table>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FEKETE</b> is available in
<a href = "../../cpp_src/fekete/fekete.html">a C++ version</a> and
<a href = "../../f_src/fekete/fekete.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fekete/fekete.html">a MATLAB version.</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/dunavant/dunavant.html">
DUNAVANT</a>,
a FORTRAN90 library which
defines Dunavant rules for quadrature
on a triangle.
</p>
<p>
<a href = "../../f_src/felippa/felippa.html">
FELIPPA</a>,
a FORTRAN90 library which
defines quadrature rules for lines, triangles, quadrilaterals,
pyramids, wedges, tetrahedrons and hexahedrons.
</p>
<p>
<a href = "../../f_src/gm_rule/gm_rule.html">
GM_RULE</a>,
a FORTRAN90 library which
defines a Grundmann-Moeller
rule for quadrature over a triangle, tetrahedron, or general
M-dimensional simplex.
</p>
<p>
<a href = "../../f_src/lyness_rule/lyness_rule.html">
LYNESS_RULE</a>
a FORTRAN90 library which
returns Lyness-Jespersen quadrature rules for the triangle.
</p>
<p>
<a href = "../../f_src/ncc_triangle/ncc_triangle.html">
NCC_TRIANGLE</a>,
a FORTRAN90 library which
defines Newton-Cotes closed quadrature
rules on a triangle.
</p>
<p>
<a href = "../../f_src/nco_triangle/nco_triangle.html">
NCO_TRIANGLE</a>,
a FORTRAN90 library which
defines Newton-Cotes open quadrature
rules on a triangle.
</p>
<p>
<a href = "../../datasets/quadrature_rules_tri/quadrature_rules_tri.html">
QUADRATURE_RULES_TRI</a>,
a dataset directory which
contains triples of files which
defines various quadrature
rules on triangles.
</p>
<p>
<a href = "../../f_src/stroud/stroud.html">
STROUD</a>,
a FORTRAN90 library which
contains quadrature rules for a variety of unusual areas, surfaces and volumes in 2D,
3D and M-dimensions.
</p>
<p>
<a href = "../../f_src/test_tri_int/test_tri_int.html">
TEST_TRI_INT</a>,
a FORTRAN90 library which
tests algorithms for quadrature over a triangle.
</p>
<p>
<a href = "../../f77_src/toms612/toms612.html">
TOMS612</a>,
a FORTRAN77 library which
estimates the integral of a function over a triangle.
</p>
<p>
<a href = "../../f_src/triangle_exactness/triangle_exactness.html">
TRIANGLE_EXACTNESS</a>,
a FORTRAN90 program which
investigates the polynomial exactness of a quadrature rule for the triangle.
</p>
<p>
<a href = "../../f_src/triangle_monte_carlo/triangle_monte_carlo.html">
TRIANGLE_MONTE_CARLO</a>,
a FORTRAN90 program which
uses the Monte Carlo method to estimate integrals over a triangle.
</p>
<p>
<a href = "../../f_src/wandzura/wandzura.html">
WANDZURA</a>,
a FORTRAN90 library which
definines Wandzura rules for quadrature on a triangle.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
SF Bockman,<br>
Generalizing the Formula for Areas of Polygons to Moments,<br>
American Mathematical Society Monthly,<br>
Volume 96, Number 2, February 1989, pages 131-132.
</li>
<li>
Hermann Engels,<br>
Numerical Quadrature and Cubature,<br>
Academic Press, 1980,<br>
ISBN: 012238850X,<br>
LC: QA299.3E5.
</li>
<li>
Arthur Stroud,<br>
Approximate Calculation of Multiple Integrals,<br>
Prentice Hall, 1971,<br>
ISBN: 0130438936,<br>
LC: QA311.S85.
</li>
<li>
Mark Taylor, Beth Wingate, Rachel Vincent,<br>
An Algorithm for Computing Fekete Points in the Triangle,<br>
SIAM Journal on Numerical Analysis,<br>
Volume 38, Number 5, 2000, pages 1707-1720.
</li>
<li>
Stephen Wandzura, Hong Xiao,<br>
Symmetric Quadrature Rules on a Triangle,<br>
Computers and Mathematics with Applications,<br>
Volume 45, 2003, pages 1829-1840.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fekete.f90">fekete.f90</a>, the source code.
</li>
<li>
<a href = "fekete.sh">fekete.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "fekete_prb.f90">fekete_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "fekete_prb.sh">fekete_prb.sh</a>,
commands to compile and run the sample program.
</li>
<li>
<a href = "fekete_prb_output.txt">fekete_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
One of the tests in the sample calling program creates
EPS files of
the abscissas in the unit triangle. These have been converted
to PNG files for
display here.
<ul>
<li>
<a href = "fekete_rule_1.png">fekete_rule_1.png</a>,
a plot of rule 1.
</li>
<li>
<a href = "fekete_rule_2.png">fekete_rule_2.png</a>,
a plot of rule 2.
</li>
<li>
<a href = "fekete_rule_3.png">fekete_rule_3.png</a>,
a plot of rule 3.
</li>
<li>
<a href = "fekete_rule_4.png">fekete_rule_4.png</a>,
a plot of rule 4.
</li>
<li>
<a href = "fekete_rule_5.png">fekete_rule_5.png</a>,
a plot of rule 5.
</li>
<li>
<a href = "fekete_rule_6.png">fekete_rule_6.png</a>,
a plot of rule 6.
</li>
<li>
<a href = "fekete_rule_7.png">fekete_rule_7.png</a>,
a plot of rule 7.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>FEKETE_DEGREE</b> returns the degree of a given Fekete rule for the triangle.
</li>
<li>
<b>FEKETE_RULE</b> returns the points and weights of a Fekete rule.
</li>
<li>
<b>FEKETE_RULE_NUM</b> returns the number of Fekete rules available.
</li>
<li>
<b>FEKETE_ORDER_NUM</b> returns the order of a given Fekete rule for the triangle.
</li>
<li>
<b>FEKETE_SUBORDER</b> returns the suborders for a Fekete rule.
</li>
<li>
<b>FEKETE_SUBORDER_NUM</b> returns the number of suborders for a Fekete rule.
</li>
<li>
<b>FEKETE_SUBRULE</b> returns a compressed Fakete rule.
</li>
<li>
<b>FILE_NAME_INC</b> increments a partially numeric filename.
</li>
<li>
<b>GET_UNIT</b> returns a free FORTRAN unit number.
</li>
<li>
<b>I4_MODP</b> returns the nonnegative remainder of integer division.
</li>
<li>
<b>I4_WRAP</b> forces an integer to lie between given limits by wrapping.
</li>
<li>
<b>REFERENCE_TO_PHYSICAL_T3</b> maps T3 reference points to physical points.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
<li>
<b>TRIANGLE_AREA</b> computes the area of a triangle.
</li>
<li>
<b>TRIANGLE_POINTS_PLOT</b> plots a triangle and some points.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 28 December 2010.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>