Targeting the Derivative Calculus Domain
-
Constant Rule:
$\frac{d}{dx}(c) = 0$ -
Power Rule:
$\frac{d}{dx}(x^n) = nx^{n-1}$ -
Sum Rule:
$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))$ . -
Difference Rule:
$\frac{d}{dx}(f(x) - g(x)) = \frac{d}{dx}(f(x)) - \frac{d}{dx}(g(x))$ . -
Product Rule:
$\frac{d}{dx}(f(x) \cdot g(x)) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ . -
Quotient Rule:
$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$ .
-
Exponential Function Euler Constant:
$\frac{d}{dx}(e^x) = e^x$ . -
Natural Logarithm:
$\frac{d}{dx}(\ln(x)) = \frac{1}{x}$ .
-
Sine Function:
$\frac{d}{dx}(\sin(x)) = \cos(x)$ . -
Cosine Function:
$\frac{d}{dx}(\cos(x)) = -\sin(x)$ . -
Tangent Function:
$\frac{d}{dx}(\tan(x)) = \sec^2(x)$ . -
Secant Function:
$\frac{d}{dx}(\sec(x)) = \sec^2(x)\tan(x)$ . -
Cosecant Function:
$\frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x)$ . -
Cotangent Function:
$\frac{d}{dx}(\cot(x)) = -\csc^2(x)$ .
-
Arcsine Function:
$\frac{d}{dx}(\arcsin(x)) = \frac{1}{\sqrt{1-x^2}}$ . -
Arccosine Function:
$\frac{d}{dx}(\arccos(x)) = -\frac{1}{\sqrt{1-x^2}}$ . -
Arctangent Function:
$\frac{d}{dx}(\arctan(x)) = \frac{1}{1+x^2}$ .
-
Chain Rule: If
$y = f(g(x))$ , then$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ , let$u = g(x)$ .
# <expression> := group
# | <unary>
# | <binary>
# | <terminal>
# <group> := LPAREN <expression> RPAREN
#
# <unary> := MINUS <expression>
# <binary> := <expression> PLUS <expression>
# | <expression> MINUS <expression>
# | <expression> TIMES <expression>
# | <expression> DIVIDE <expression>
# | <expression> POWER <expression>
#
# <terminal> := <variable>
# | <number>
# | <function>
# | <constant>
#
# <variable> := [a-zA-Z]+
# <number> := d+
# <constant> := sin | cos | tan | ...
# <function> := <constant> group
https://www.eeweb.com/tools/calculus-derivatives-and-limits-reference-sheet/