@@ -150,26 +150,27 @@ where NGPUS is the number of gpus available.
150
150
151
151
* Vanilla scene graph generation model with resnet-101 as backbone:
152
152
```
153
- python main.py --config-file configs/baseline_res101_joint .yaml
153
+ python main.py --config-file configs/sgg_res101_joint .yaml --algorithm $ALGORITHM
154
154
```
155
155
156
156
Multi-GPU training:
157
157
```
158
- python -m torch.distributed.launch --nproc_per_node=$NGPUS main.py --config-file configs/baseline_res101_joint .yaml
158
+ python -m torch.distributed.launch --nproc_per_node=$NGPUS main.py --config-file configs/sgg_res101_joint .yaml --algorithm $ALGORITHM
159
159
```
160
- where NGPUS is the number of gpus available.
160
+ where NGPUS is the number of gpus available. ALGORIHM is the scene graph generation model name.
161
161
162
162
### Train scene graph generation model stepwise (train detector first, and then sgg):
163
163
164
164
* Vanilla scene graph generation model with resnet-101 as backbone:
165
165
```
166
- python main.py --config-file configs/baseline_res101_step .yaml
166
+ python main.py --config-file configs/sgg_res101_step .yaml --algorithm $ALGORITHM
167
167
```
168
168
169
169
Multi-GPU training:
170
170
```
171
- python -m torch.distributed.launch --nproc_per_node=$NGPUS main.py --config-file configs/baseline_res101_step .yaml
171
+ python -m torch.distributed.launch --nproc_per_node=$NGPUS main.py --config-file configs/sgg_res101_step .yaml --algorithm $ALGORITHM
172
172
```
173
+ where NGPUS is the number of gpus available. ALGORIHM is the scene graph generation model name.
173
174
174
175
## Evaluate
175
176
@@ -188,12 +189,12 @@ where CHECKPOINT is the iteration number. By default it will evaluate the whole
188
189
189
190
* Vanilla scene graph generation model with resnet-101 as backbone:
190
191
```
191
- python main.py --config-file configs/baseline_res101_{joint/step}.yaml --inference --resume $CHECKPOINT
192
+ python main.py --config-file configs/baseline_res101_{joint/step}.yaml --inference --resume $CHECKPOINT --algorithm $ALGORITHM
192
193
```
193
194
194
195
* Vanilla scene graph generation model with resnet-101 as backbone and use frequency prior:
195
196
```
196
- python main.py --config-file configs/baseline_res101_{joint/step}.yaml --inference --resume $CHECKPOINT --use_freq_prior
197
+ python main.py --config-file configs/baseline_res101_{joint/step}.yaml --inference --resume $CHECKPOINT --algorithm $ALGORITHM -- use_freq_prior
197
198
```
198
199
199
200
Similarly you can also append the ''--inference $YOUR_NUMBER'' to perform partially evaluate.
0 commit comments