-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
165 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,3 +3,4 @@ deps | |
.vscode | ||
|
||
Manifest.toml | ||
temp |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
using SpecialFunctions: gamma_inc, lgamma | ||
|
||
export cdfgam, pelgam, qgamma | ||
export fit_gamma | ||
|
||
|
||
function qgamma(value::Float64, params::AbstractVector) | ||
alfa = params[1] | ||
beta = params[2] | ||
|
||
y = value / alfa / beta | ||
z = (y^(1 / 3) + 1 / (9 * beta) - 1) * sqrt(9 * beta) | ||
return z | ||
end | ||
|
||
|
||
function cdfgam(para::AbstractVector{Float64}, x::Float64) | ||
α, β = para | ||
if α <= 0 || β <= 0 | ||
println(" *** ERROR *** ROUTINE CDFGAM : PARAMETERS INVALID") | ||
return NaN | ||
end | ||
x <= 0 && return NaN | ||
gamma_inc(α, x / β)[1] | ||
end | ||
|
||
|
||
function pelgam(lmom::AbstractVector{Float64}) | ||
a1, a2, a3 = -0.3080, -0.05812, 0.01765 | ||
b1, b2, b3, b4 = 0.7213, -0.5947, -2.1817, 1.2113 | ||
|
||
if lmom[1] <= lmom[2] || lmom[2] <= 0.0 | ||
println(" *** ERROR *** ROUTINE PELGAM : L-MOMENTS INVALID") | ||
return 0.0, 0.0 | ||
end | ||
|
||
cv = lmom[2] / lmom[1] | ||
if cv < 0.5 | ||
t = pi * cv * cv | ||
alpha = (1.0 + a1 * t) / (t * (1.0 + t * (a2 + t * a3))) | ||
else | ||
t = 1.0 - cv | ||
alpha = t * (b1 + t * b2) / (1.0 + t * (b3 + t * b4)) | ||
end | ||
alpha, lmom[1] / alpha # α, β | ||
end | ||
|
||
|
||
function fit_gamma(x::AbstractVector) | ||
pwm = PWM(x, 0:2) | ||
l = pwm2lmom(pwm) | ||
λs = l.lambdas | ||
R = l.ratios | ||
|
||
lmom = [λs[1:2]..., R[3]] | ||
pelgam(lmom) | ||
end | ||
|
||
# function fit_gamma(x::AbstractVector) | ||
# x2 = x[.!isnan(x)] |> sort | ||
# beta = pwm(x2, 0.0, 0.0, 0) # 这里pwm计算存在问题 | ||
# pelgam(beta) | ||
# end | ||
|
||
|
||
export lmom_fit_gamma | ||
|
||
# function lmrgam(para::Vector{Float64}, nmom::Int=2) | ||
# CONST = 0.564189583547756287 | ||
# a0 = 0.32573501 | ||
# a1, a2, a3 = 0.16869150, 0.78327243, -0.29120539 | ||
# b1, b2 = 0.46697102, 0.24255406 | ||
# c0 = 0.12260172 | ||
# c1, c2, c3 = 0.53730130, 0.43384378, 0.11101277 | ||
# d1, d2 = 0.18324466, 0.20166036 | ||
# e1, e2, e3 = 0.23807576, 0.15931792, 0.11618371 | ||
# f1, f2, f3 = 0.51533299, 0.71425260, 0.19745056 | ||
# g1, g2, g3 = 0.21235833, 0.41670213, 0.31925299 | ||
# h1, h2, h3 = 0.90551443, 0.26649995, 0.26193668 | ||
|
||
# alpha, beta = para[1:2] | ||
# if alpha <= 0.0 || beta <= 0.0 | ||
# println(" *** ERROR *** ROUTINE LMRGAM : PARAMETERS INVALID") | ||
# return | ||
# end | ||
|
||
# if nmom > 4 | ||
# println(" *** ERROR *** ROUTINE LMRGAM : PARAMETER NMOM TOO LARGE") | ||
# return | ||
# end | ||
|
||
# lmom = zeros(nmom) | ||
# lmom[1] = alpha * beta | ||
# nmom == 1 && return lmom | ||
|
||
# lmom[2] = beta * CONST * exp(lgamma(alpha + 0.5) - lgamma(alpha)) | ||
# nmom == 2 && return lmom | ||
|
||
# if alpha >= 1.0 | ||
# z = 1.0 / alpha | ||
# lmom[3] = sqrt(z) * (((a3 * z + a2) * z + a1) * z + a0) / ((b2 * z + b1) * z + 1.0) | ||
# nmom == 3 && return lmom | ||
|
||
# lmom[4] = (((c3 * z + c2) * z + c1) * z + c0) / ((d2 * z + d1) * z + 1.0) | ||
# else | ||
# z = alpha | ||
# lmom[3] = (((e3 * z + e2) * z + e1) * z + 1.0) / (((f3 * z + f2) * z + f1) * z + 1.0) | ||
# nmom == 3 && return lmom | ||
|
||
# lmom[4] = (((g3 * z + g2) * z + g1) * z + 1.0) / (((h3 * z + h2) * z + h1) * z + 1.0) | ||
# end | ||
|
||
# return lmom | ||
# end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
function _fit_logLogistic(beta::AbstractVector) | ||
# params = zeros(3) | ||
g1 = 0.0 | ||
g2 = 0.0 | ||
|
||
# estimate gamma parameter | ||
γ = (2 * beta[2] - beta[1]) / (6 * beta[2] - beta[1] - 6 * beta[3]) | ||
g1 = exp(loggamma(1 + 1 / γ)) | ||
g2 = exp(loggamma(1 - 1 / γ)) | ||
|
||
# estimate alpha parameter | ||
α = (beta[1] - 2 * beta[2]) * γ / (g1 * g2) # params[2] | ||
# estimate beta parameter | ||
β = beta[1] - α * g1 * g2 # params[1] | ||
β, α, γ | ||
end | ||
|
||
|
||
function fit_logLogistic(x::AbstractVector) | ||
x2 = x[.!isnan.(x)] |> sort | ||
beta = pwm(x2, 0.0, 0.0, 0) | ||
params = _fit_logLogistic(beta) | ||
params | ||
end | ||
|
||
|
||
function cdf_logLogistic(x::Real, params) | ||
β, α, γ = params[1:3] | ||
1 / (1 + (pow(α / (x - β), γ))) | ||
end | ||
|
||
|
||
function invcdf_standardGaussian(prob::Float64) | ||
C = [2.515517, 0.802853, 0.010328] | ||
d = [0, 1.432788, 0.189269, 0.001308] | ||
|
||
W = prob <= 0.5 ? sqrt(-2 * log(prob)) : sqrt(-2 * log(1 - prob)) | ||
WW = W * W | ||
WWW = WW * W | ||
resul = W - (C[1] + C[2] * W + C[3] * WW) / (1 + d[2] * W + d[3] * WW + d[4] * WWW) | ||
|
||
prob > 0.5 && (resul = -resul) | ||
return resul | ||
end | ||
|
||
export fit_logLogistic |