-
Notifications
You must be signed in to change notification settings - Fork 548
/
Copy pathtrt_googlenet.py
128 lines (103 loc) · 4 KB
/
trt_googlenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""trt_googlenet.py
This script demonstrates how to do real-time image classification
(inferencing) with Cython wrapped TensorRT optimized googlenet engine.
"""
import timeit
import argparse
import numpy as np
import cv2
from utils.camera import add_camera_args, Camera
from utils.display import open_window, show_help_text, set_display
from pytrt import PyTrtGooglenet
PIXEL_MEANS = np.array([[[104., 117., 123.]]], dtype=np.float32)
DEPLOY_ENGINE = 'googlenet/deploy.engine'
ENGINE_SHAPE0 = (3, 224, 224)
ENGINE_SHAPE1 = (1000, 1, 1)
RESIZED_SHAPE = (224, 224)
WINDOW_NAME = 'TrtGooglenetDemo'
def parse_args():
"""Parse input arguments."""
desc = ('Capture and display live camera video, while doing '
'real-time image classification with TrtGooglenet '
'on Jetson Nano')
parser = argparse.ArgumentParser(description=desc)
parser = add_camera_args(parser)
parser.add_argument('--crop', dest='crop_center',
help='crop center square of image for '
'inferencing [False]',
action='store_true')
args = parser.parse_args()
return args
def show_top_preds(img, top_probs, top_labels):
"""Show top predicted classes and softmax scores."""
x = 10
y = 40
for prob, label in zip(top_probs, top_labels):
pred = '{:.4f} {:20s}'.format(prob, label)
#cv2.putText(img, pred, (x+1, y), cv2.FONT_HERSHEY_PLAIN, 1.0,
# (32, 32, 32), 4, cv2.LINE_AA)
cv2.putText(img, pred, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0,
(0, 0, 240), 1, cv2.LINE_AA)
y += 20
def classify(img, net, labels, do_cropping):
"""Classify 1 image (crop)."""
crop = img
if do_cropping:
h, w, _ = img.shape
if h < w:
crop = img[:, ((w-h)//2):((w+h)//2), :]
else:
crop = img[((h-w)//2):((h+w)//2), :, :]
# preprocess the image crop
crop = cv2.resize(crop, RESIZED_SHAPE)
crop = crop.astype(np.float32) - PIXEL_MEANS
crop = crop.transpose((2, 0, 1)) # HWC -> CHW
# inference the (cropped) image
tic = timeit.default_timer()
out = net.forward(crop[None]) # add 1 dimension to 'crop' as batch
toc = timeit.default_timer()
print('{:.3f}s'.format(toc-tic))
# output top 3 predicted scores and class labels
out_prob = np.squeeze(out['prob'][0])
top_inds = out_prob.argsort()[::-1][:3]
return (out_prob[top_inds], labels[top_inds])
def loop_and_classify(cam, net, labels, do_cropping):
"""Continuously capture images from camera and do classification."""
show_help = True
full_scrn = False
help_text = '"Esc" to Quit, "H" for Help, "F" to Toggle Fullscreen'
while True:
if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
break
img = cam.read()
if img is None:
break
top_probs, top_labels = classify(img, net, labels, do_cropping)
show_top_preds(img, top_probs, top_labels)
if show_help:
show_help_text(img, help_text)
cv2.imshow(WINDOW_NAME, img)
key = cv2.waitKey(1)
if key == 27: # ESC key: quit program
break
elif key == ord('H') or key == ord('h'): # Toggle help message
show_help = not show_help
elif key == ord('F') or key == ord('f'): # Toggle fullscreen
full_scrn = not full_scrn
set_display(WINDOW_NAME, full_scrn)
def main():
args = parse_args()
labels = np.loadtxt('googlenet/synset_words.txt', str, delimiter='\t')
cam = Camera(args)
if not cam.isOpened():
raise SystemExit('ERROR: failed to open camera!')
# initialize the tensorrt googlenet engine
net = PyTrtGooglenet(DEPLOY_ENGINE, ENGINE_SHAPE0, ENGINE_SHAPE1)
open_window(
WINDOW_NAME, 'Camera TensorRT GoogLeNet Demo',
cam.img_width, cam.img_height)
loop_and_classify(cam, net, labels, args.crop_center)
cam.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()