This is the implementation of our ECCV 2018 paper Online Multi-Object Tracking with Dual Matching Attention Networks. We integrate the ECO [1] for single object tracking. The code framework for MOT benefits from the MDP [2].
- Cuda 8.0
- Cudnn 5.1
- Python 2.7
- Keras 2.0.5
- Tensorflow 1.1.0
For example:
conda create -n mot anaconda python=2.7
conda activate mot
conda install -c menpo opencv
pip install tensorflow-gpu==1.1.0
pip install keras==2.0.5
- Download the DMAN model and put it into the "model/" folder.
- Download the MOT16 dataset, unzip it to the "data/" folder.
- Cd to the "ECO/" folder, run the script install.m to compile libs for the ECO tracker
- Run the socket server script:
python calculate_similarity.py
- Run the socket client script DMAN_demo.m in Matlab.
If you use this code, please consider citing:
@inproceedings{zhu-eccv18-DMAN,
author = {Zhu, Ji and Yang, Hua and Liu, Nian and Kim, Minyoung and Zhang, Wenjun and Yang, Ming-Hsuan},
title = {Online Multi-Object Tracking with Dual Matching Attention Networks},
booktitle = {European Computer Vision Conference},
year = {2018},
}
[1] Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: Efficient convolution operators for tracking. In: CVPR (2017)
[2] Xiang, Y., Alahi, A., Savarese, S.: Learning to track: Online multi-object tracking by decision making. In: ICCV (2015)