-
Notifications
You must be signed in to change notification settings - Fork 16
/
anchor_target_layer.py
executable file
·100 lines (83 loc) · 4.46 KB
/
anchor_target_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python
#
# Copyright 2018 houjingyong@gmail.com
#
# Lisence MIT
#
from __future__ import absolute_import
import torch
import torch.nn as nn
import numpy as np
import numpy.random as npr
from config import cfg
from bbox_transform import get_out_utt_boxes, bbox_overlaps, bbox_transform, bbox_transform_batch
try:
long # python 2
except NameError:
long = int # python 3
class AnchorTargetLayer(nn.Module):
"""
Assign anchors to ground-truth targets. Produce anchor classification
labels and bounding-box regression targets
"""
def __init__(self):
super(AnchorTargetLayer, self).__init__()
def forward(self, anchors, gt_boxes, act_lens):
# here the anchors should be the anchors for each utterance, because
# when we calculate the training target (before RPN ) for each
# utterance, the anchors are exactly the same (different from proposals)
batch_size = gt_boxes.size(0)
num_anchors_per_utt = anchors.size(0)
rpn_labels = gt_boxes.new(batch_size, anchors.size(0)).fill_(-1)
bbox_inside_weights = gt_boxes.new(batch_size, anchors.size(0)).zero_()
bbox_outside_weights = gt_boxes.new(batch_size, anchors.size(0)).zero_()
overlaps = bbox_overlaps(anchors, gt_boxes[:,:, 1:])
# batch_size * num_anchors_per_utt * num_gt_boxes
max_overlaps, argmax_overlaps = torch.max(overlaps, 2)
# For each anchor, we will find a max gt_boxes as its
# potential training target
# fg label
rpn_labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1
# bg label
rpn_labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP ] = 0
# disable the anchors out of utterance
disable_indexes = get_out_utt_boxes(anchors, act_lens, batch_size)
rpn_labels[disable_indexes] = -1
num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE)
sum_fg = torch.sum((rpn_labels == 1).int(), 1)
sum_bg = torch.sum((rpn_labels == 0).int(), 1)
for i in range(batch_size):
# subsample positive labels if we have too man
fg_inds = torch.nonzero(rpn_labels[i] == 1).view(-1)
bg_inds = torch.nonzero(rpn_labels[i] == 0).view(-1)
if fg_inds.size(0) > 0:
rpn_labels[i][fg_inds] = torch.index_select(gt_boxes[i], 0, argmax_overlaps[i][fg_inds])[:, 0]
if sum_fg[i] > num_fg:
rand_num = torch.from_numpy(np.random.permutation(fg_inds.size(0))).type_as(gt_boxes).long()
disable_inds = fg_inds[rand_num[:fg_inds.size(0)-num_fg]]
rpn_labels[i][disable_inds] = -1
num_bg = int(cfg.TRAIN.RPN_BATCHSIZE - torch.sum((rpn_labels[i] == 1).int()))
if sum_bg[i] > num_bg:
rand_num = torch.from_numpy(np.random.permutation(bg_inds.size(0))).type_as(gt_boxes).long()
disable_inds = bg_inds[rand_num[:bg_inds.size(0)-num_bg]]
rpn_labels[i][disable_inds] = -1
bbox_inside_weights[rpn_labels > 0] = cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS
bbox_inside_weights = bbox_inside_weights.view(batch_size, num_anchors_per_utt, 1).expand(batch_size, num_anchors_per_utt, 2)
num_positive = torch.sum(rpn_labels > 0)
num_negative = torch.sum(rpn_labels == 0)
if cfg.DEBUG:
print('Num positive samples: {}, num negative samples: {}'.format(num_positive, num_negative))
if num_positive < 1:
num_positive += 1
positive_weights = 1.0 / num_positive.item()
negative_weights = 1.0 / num_positive.item()
bbox_outside_weights[rpn_labels > 0] = positive_weights
bbox_outside_weights[rpn_labels == 0] = negative_weights
bbox_outside_weights = bbox_outside_weights.view(batch_size, num_anchors_per_utt, 1).expand(batch_size, num_anchors_per_utt,2)
# compute bbox regression target of anchors
# here for each utterance in the batch, we only choose the best matching
# gt_box to calculate the bbox_targets for each anchor
offset = torch.arange(0, batch_size) * gt_boxes.size(1)
argmax_overlaps = argmax_overlaps + offset.view(batch_size, 1).type_as(argmax_overlaps)
rpn_targets = bbox_transform_batch(anchors, gt_boxes[:,:,1:].view(-1,2)[argmax_overlaps.view(-1), :].view(batch_size, -1, 2)) # num_anchors * num_gt_boxes
return rpn_labels, rpn_targets, bbox_inside_weights, bbox_outside_weights