forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspmm.py
150 lines (121 loc) · 3.71 KB
/
spmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import argparse
import sys
from utils import Event, gen_sparse_coo, gen_sparse_coo_and_csr, gen_sparse_csr
import torch
def test_sparse_csr(m, n, k, nnz, test_count):
start_timer = Event(enable_timing=True)
stop_timer = Event(enable_timing=True)
csr = gen_sparse_csr((m, k), nnz)
mat = torch.randn(k, n, dtype=torch.double)
times = []
for _ in range(test_count):
start_timer.record()
csr.matmul(mat)
stop_timer.record()
times.append(start_timer.elapsed_time(stop_timer))
return sum(times) / len(times)
def test_sparse_coo(m, n, k, nnz, test_count):
start_timer = Event(enable_timing=True)
stop_timer = Event(enable_timing=True)
coo = gen_sparse_coo((m, k), nnz)
mat = torch.randn(k, n, dtype=torch.double)
times = []
for _ in range(test_count):
start_timer.record()
coo.matmul(mat)
stop_timer.record()
times.append(start_timer.elapsed_time(stop_timer))
return sum(times) / len(times)
def test_sparse_coo_and_csr(m, n, k, nnz, test_count):
start = Event(enable_timing=True)
stop = Event(enable_timing=True)
coo, csr = gen_sparse_coo_and_csr((m, k), nnz)
mat = torch.randn((k, n), dtype=torch.double)
times = []
for _ in range(test_count):
start.record()
coo.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
coo_mean_time = sum(times) / len(times)
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
csr_mean_time = sum(times) / len(times)
return coo_mean_time, csr_mean_time
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SpMM")
parser.add_argument("--format", default="csr", type=str)
parser.add_argument("--m", default="1000", type=int)
parser.add_argument("--n", default="1000", type=int)
parser.add_argument("--k", default="1000", type=int)
parser.add_argument("--nnz-ratio", "--nnz_ratio", default="0.1", type=float)
parser.add_argument("--outfile", default="stdout", type=str)
parser.add_argument("--test-count", "--test_count", default="10", type=int)
args = parser.parse_args()
if args.outfile == "stdout":
outfile = sys.stdout
elif args.outfile == "stderr":
outfile = sys.stderr
else:
outfile = open(args.outfile, "a")
test_count = args.test_count
m = args.m
n = args.n
k = args.k
nnz_ratio = args.nnz_ratio
nnz = int(nnz_ratio * m * k)
if args.format == "csr":
time = test_sparse_csr(m, n, k, nnz, test_count)
elif args.format == "coo":
time = test_sparse_coo(m, n, k, nnz, test_count)
elif args.format == "both":
time_coo, time_csr = test_sparse_coo_and_csr(m, nnz, test_count)
if args.format == "both":
print(
"format=coo",
" nnz_ratio=",
nnz_ratio,
" m=",
m,
" n=",
n,
" k=",
k,
" time=",
time_coo,
file=outfile,
)
print(
"format=csr",
" nnz_ratio=",
nnz_ratio,
" m=",
m,
" n=",
n,
" k=",
k,
" time=",
time_csr,
file=outfile,
)
else:
print(
"format=",
args.format,
" nnz_ratio=",
nnz_ratio,
" m=",
m,
" n=",
n,
" k=",
k,
" time=",
time,
file=outfile,
)