forked from ZJULearning/pixel_link
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_pixel_link.py
293 lines (242 loc) · 13.3 KB
/
train_pixel_link.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#test code to make sure the ground truth calculation and data batch works well.
import numpy as np
import tensorflow as tf # test
from tensorflow.python.ops import control_flow_ops
from datasets import dataset_factory
from nets import pixel_link_symbol
import util
import pixel_link
slim = tf.contrib.slim
import config
# =========================================================================== #
# Checkpoint and running Flags
# =========================================================================== #
tf.app.flags.DEFINE_string('train_dir', None,
'the path to store checkpoints and eventfiles for summaries')
tf.app.flags.DEFINE_string('checkpoint_path', None,
'the path of pretrained model to be used. If there are checkpoints in train_dir, this config will be ignored.')
tf.app.flags.DEFINE_float('gpu_memory_fraction', -1,
'the gpu memory fraction to be used. If less than 0, allow_growth = True is used.')
tf.app.flags.DEFINE_integer('batch_size', None, 'The number of samples in each batch.')
tf.app.flags.DEFINE_integer('num_gpus', 1, 'The number of gpus can be used.')
tf.app.flags.DEFINE_integer('max_number_of_steps', 1000000, 'The maximum number of training steps.')
tf.app.flags.DEFINE_integer('log_every_n_steps', 1, 'log frequency')
tf.app.flags.DEFINE_bool("ignore_missing_vars", False, '')
tf.app.flags.DEFINE_string('checkpoint_exclude_scopes', None, 'checkpoint_exclude_scopes')
# =========================================================================== #
# Optimizer configs.
# =========================================================================== #
tf.app.flags.DEFINE_float('learning_rate', 0.001, 'learning rate.')
tf.app.flags.DEFINE_float('momentum', 0.9, 'The momentum for the MomentumOptimizer')
tf.app.flags.DEFINE_float('weight_decay', 0.0001, 'The weight decay on the model weights.')
tf.app.flags.DEFINE_bool('using_moving_average', True, 'Whether to use ExponentionalMovingAverage')
tf.app.flags.DEFINE_float('moving_average_decay', 0.9999, 'The decay rate of ExponentionalMovingAverage')
# =========================================================================== #
# I/O and preprocessing Flags.
# =========================================================================== #
tf.app.flags.DEFINE_integer(
'num_readers', 1,
'The number of parallel readers that read data from the dataset.')
tf.app.flags.DEFINE_integer(
'num_preprocessing_threads', 24,
'The number of threads used to create the batches.')
# =========================================================================== #
# Dataset Flags.
# =========================================================================== #
tf.app.flags.DEFINE_string(
'dataset_name', None, 'The name of the dataset to load.')
tf.app.flags.DEFINE_string(
'dataset_split_name', 'train', 'The name of the train/test split.')
tf.app.flags.DEFINE_string(
'dataset_dir', None, 'The directory where the dataset files are stored.')
tf.app.flags.DEFINE_integer('train_image_width', 512, 'Train image size')
tf.app.flags.DEFINE_integer('train_image_height', 512, 'Train image size')
FLAGS = tf.app.flags.FLAGS
def config_initialization():
# image shape and feature layers shape inference
image_shape = (FLAGS.train_image_height, FLAGS.train_image_width)
if not FLAGS.dataset_dir:
raise ValueError('You must supply the dataset directory with --dataset_dir')
tf.logging.set_verbosity(tf.logging.DEBUG)
util.init_logger(
log_file = 'log_train_pixel_link_%d_%d.log'%image_shape,
log_path = FLAGS.train_dir, stdout = False, mode = 'a')
config.load_config(FLAGS.train_dir)
config.init_config(image_shape,
batch_size = FLAGS.batch_size,
weight_decay = FLAGS.weight_decay,
num_gpus = FLAGS.num_gpus
)
batch_size = config.batch_size
batch_size_per_gpu = config.batch_size_per_gpu
tf.summary.scalar('batch_size', batch_size)
tf.summary.scalar('batch_size_per_gpu', batch_size_per_gpu)
util.proc.set_proc_name('train_pixel_link_on'+ '_' + FLAGS.dataset_name)
dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)
config.print_config(FLAGS, dataset)
return dataset
def create_dataset_batch_queue(dataset):
from preprocessing import ssd_vgg_preprocessing
with tf.device('/cpu:0'):
with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
num_readers=FLAGS.num_readers,
common_queue_capacity=1000 * config.batch_size,
common_queue_min=700 * config.batch_size,
shuffle=True)
# Get for SSD network: image, labels, bboxes.
[image, glabel, gbboxes, x1, x2, x3, x4, y1, y2, y3, y4] = provider.get([
'image',
'object/label',
'object/bbox',
'object/oriented_bbox/x1',
'object/oriented_bbox/x2',
'object/oriented_bbox/x3',
'object/oriented_bbox/x4',
'object/oriented_bbox/y1',
'object/oriented_bbox/y2',
'object/oriented_bbox/y3',
'object/oriented_bbox/y4'
])
gxs = tf.transpose(tf.stack([x1, x2, x3, x4])) #shape = (N, 4)
gys = tf.transpose(tf.stack([y1, y2, y3, y4]))
image = tf.identity(image, 'input_image')
# Pre-processing image, labels and bboxes.
image, glabel, gbboxes, gxs, gys = \
ssd_vgg_preprocessing.preprocess_image(
image, glabel, gbboxes, gxs, gys,
out_shape = config.train_image_shape,
data_format = config.data_format,
use_rotation = config.use_rotation,
is_training = True)
image = tf.identity(image, 'processed_image')
# calculate ground truth
pixel_cls_label, pixel_cls_weight, \
pixel_link_label, pixel_link_weight = \
pixel_link.tf_cal_gt_for_single_image(gxs, gys, glabel)
# batch them
with tf.name_scope(FLAGS.dataset_name + '_batch'):
b_image, b_pixel_cls_label, b_pixel_cls_weight, \
b_pixel_link_label, b_pixel_link_weight = \
tf.train.batch(
[image, pixel_cls_label, pixel_cls_weight,
pixel_link_label, pixel_link_weight],
batch_size = config.batch_size_per_gpu,
num_threads= FLAGS.num_preprocessing_threads,
capacity = 500)
with tf.name_scope(FLAGS.dataset_name + '_prefetch_queue'):
batch_queue = slim.prefetch_queue.prefetch_queue(
[b_image, b_pixel_cls_label, b_pixel_cls_weight,
b_pixel_link_label, b_pixel_link_weight],
capacity = 50)
return batch_queue
def sum_gradients(clone_grads):
averaged_grads = []
for grad_and_vars in zip(*clone_grads):
grads = []
var = grad_and_vars[0][1]
try:
for g, v in grad_and_vars:
assert v == var
grads.append(g)
grad = tf.add_n(grads, name = v.op.name + '_summed_gradients')
except:
import pdb
pdb.set_trace()
averaged_grads.append((grad, v))
# tf.summary.histogram("variables_and_gradients_" + grad.op.name, grad)
# tf.summary.histogram("variables_and_gradients_" + v.op.name, v)
# tf.summary.scalar("variables_and_gradients_" + grad.op.name+\
# '_mean/var_mean', tf.reduce_mean(grad)/tf.reduce_mean(var))
# tf.summary.scalar("variables_and_gradients_" + v.op.name+'_mean',tf.reduce_mean(var))
return averaged_grads
def create_clones(batch_queue):
with tf.device('/cpu:0'):
global_step = slim.create_global_step()
learning_rate = tf.constant(FLAGS.learning_rate, name='learning_rate')
optimizer = tf.train.MomentumOptimizer(learning_rate,
momentum=FLAGS.momentum, name='Momentum')
tf.summary.scalar('learning_rate', learning_rate)
# place clones
pixel_link_loss = 0; # for summary only
gradients = []
for clone_idx, gpu in enumerate(config.gpus):
do_summary = clone_idx == 0 # only summary on the first clone
reuse = clone_idx > 0
with tf.variable_scope(tf.get_variable_scope(), reuse = reuse):
with tf.name_scope(config.clone_scopes[clone_idx]) as clone_scope:
with tf.device(gpu) as clone_device:
b_image, b_pixel_cls_label, b_pixel_cls_weight, \
b_pixel_link_label, b_pixel_link_weight = batch_queue.dequeue()
# build model and loss
net = pixel_link_symbol.PixelLinkNet(b_image, is_training = True)
net.build_loss(
pixel_cls_labels = b_pixel_cls_label,
pixel_cls_weights = b_pixel_cls_weight,
pixel_link_labels = b_pixel_link_label,
pixel_link_weights = b_pixel_link_weight,
do_summary = do_summary)
# gather losses
losses = tf.get_collection(tf.GraphKeys.LOSSES, clone_scope)
assert len(losses) == 2
total_clone_loss = tf.add_n(losses) / config.num_clones
pixel_link_loss += total_clone_loss
# gather regularization loss and add to clone_0 only
if clone_idx == 0:
regularization_loss = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
total_clone_loss = total_clone_loss + regularization_loss
# compute clone gradients
clone_gradients = optimizer.compute_gradients(total_clone_loss)
gradients.append(clone_gradients)
tf.summary.scalar('pixel_link_loss', pixel_link_loss)
tf.summary.scalar('regularization_loss', regularization_loss)
# add all gradients together
# note that the gradients do not need to be averaged, because the average operation has been done on loss.
averaged_gradients = sum_gradients(gradients)
apply_grad_op = optimizer.apply_gradients(averaged_gradients, global_step=global_step)
train_ops = [apply_grad_op]
bn_update_op = util.tf.get_update_op()
if bn_update_op is not None:
train_ops.append(bn_update_op)
# moving average
if FLAGS.using_moving_average:
tf.logging.info('using moving average in training, \
with decay = %f'%(FLAGS.moving_average_decay))
ema = tf.train.ExponentialMovingAverage(FLAGS.moving_average_decay)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([apply_grad_op]):# ema after updating
train_ops.append(tf.group(ema_op))
train_op = control_flow_ops.with_dependencies(train_ops, pixel_link_loss, name='train_op')
return train_op
def train(train_op):
summary_op = tf.summary.merge_all()
sess_config = tf.ConfigProto(log_device_placement = False, allow_soft_placement = True)
if FLAGS.gpu_memory_fraction < 0:
sess_config.gpu_options.allow_growth = True
elif FLAGS.gpu_memory_fraction > 0:
sess_config.gpu_options.per_process_gpu_memory_fraction = FLAGS.gpu_memory_fraction;
init_fn = util.tf.get_init_fn(checkpoint_path = FLAGS.checkpoint_path, train_dir = FLAGS.train_dir,
ignore_missing_vars = FLAGS.ignore_missing_vars, checkpoint_exclude_scopes = FLAGS.checkpoint_exclude_scopes)
saver = tf.train.Saver(max_to_keep = 500, write_version = 2)
slim.learning.train(
train_op,
logdir = FLAGS.train_dir,
init_fn = init_fn,
summary_op = summary_op,
number_of_steps = FLAGS.max_number_of_steps,
log_every_n_steps = FLAGS.log_every_n_steps,
save_summaries_secs = 30,
saver = saver,
save_interval_secs = 1200,
session_config = sess_config
)
def main(_):
# The choice of return dataset object via initialization method maybe confusing,
# but I need to print all configurations in this method, including dataset information.
dataset = config_initialization()
batch_queue = create_dataset_batch_queue(dataset)
train_op = create_clones(batch_queue)
train(train_op)
if __name__ == '__main__':
tf.app.run()