forked from brightmart/text_classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha1_seq2seq_attention_predict.py
143 lines (135 loc) · 8.5 KB
/
a1_seq2seq_attention_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
#prediction using model.
#process--->1.load data(X:list of lint,y:int). 2.create session. 3.feed data. 4.predict
import sys
reload(sys)
sys.setdefaultencoding('utf8')
import tensorflow as tf
import numpy as np
#from p5_fastTextB_model import fastTextB as fastText
from data_util_zhihu import load_data_predict,load_final_test_data,create_voabulary,create_voabulary_label
from tflearn.data_utils import pad_sequences #to_categorical
import os
import codecs
from p7_TextCNN_model import TextCNN
from a1_seq2seq_attention_model import seq2seq_attention_model
#configuration
FLAGS=tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("num_classes",1999+3,"number of label") #3 ADDITIONAL TOKEN: _GO,_END,_PAD
tf.app.flags.DEFINE_float("learning_rate",0.01,"learning rate")
tf.app.flags.DEFINE_integer("batch_size", 1, "Batch size for training/evaluating.") #批处理的大小 32-->128
tf.app.flags.DEFINE_integer("decay_steps", 6000, "how many steps before decay learning rate.") #6000批处理的大小 32-->128
tf.app.flags.DEFINE_float("decay_rate", 1.0, "Rate of decay for learning rate.") #0.87一次衰减多少
tf.app.flags.DEFINE_string("ckpt_dir","checkpoint_seq2seq_attention/seq2seq_attention1/","checkpoint location for the model")
tf.app.flags.DEFINE_integer("sequence_length",100,"max sentence length")
tf.app.flags.DEFINE_integer("embed_size",100,"embedding size")
tf.app.flags.DEFINE_boolean("is_training",False,"is traning.true:tranining,false:testing/inference")
tf.app.flags.DEFINE_integer("num_epochs",10,"number of epochs to run.")
tf.app.flags.DEFINE_integer("validate_every", 1, "Validate every validate_every epochs.") #每10轮做一次验证
tf.app.flags.DEFINE_integer("validate_step", 1000, "how many step to validate.") #1500做一次检验
tf.app.flags.DEFINE_boolean("use_embedding",True,"whether to use embedding or not.")
#tf.app.flags.DEFINE_string("cache_path","text_cnn_checkpoint/data_cache.pik","checkpoint location for the model")
#train-zhihu4-only-title-all.txt
tf.app.flags.DEFINE_string("traning_data_path","train-zhihu4-only-title-all.txt","path of traning data.") #O.K.train-zhihu4-only-title-all.txt-->training-data/test-zhihu4-only-title.txt--->'training-data/train-zhihu5-only-title-multilabel.txt'
tf.app.flags.DEFINE_string("word2vec_model_path","zhihu-word2vec-title-desc.bin-100","word2vec's vocabulary and vectors") #zhihu-word2vec.bin-100-->zhihu-word2vec-multilabel-minicount15.bin-100
tf.app.flags.DEFINE_boolean("multi_label_flag",True,"use multi label or single label.") #set this false. becase we are using it is a sequence of token here.
tf.app.flags.DEFINE_integer("num_sentences", 4, "number of sentences in the document") #每10轮做一次验证
tf.app.flags.DEFINE_integer("hidden_size",100,"hidden size")
tf.app.flags.DEFINE_float("l2_lambda", 0.0001, "l2 regularization")
tf.app.flags.DEFINE_string("predict_target_file","checkpoint_seq2seq_attention/seq2seq_attention1//zhihu_result_seq2seq_attention.csv","target file path for final prediction")
tf.app.flags.DEFINE_string("predict_source_file",'test-zhihu-forpredict-title-desc-v6.txt',"target file path for final prediction") #test-zhihu-forpredict-v4only-title.txt
tf.app.flags.DEFINE_integer("decoder_sent_length",6,"length of decoder inputs")
#1.load data(X:list of lint,y:int). 2.create session. 3.feed data. 4.training (5.validation) ,(6.prediction)
# 1.load data with vocabulary of words and labels
_GO="_GO"
_END="_END"
_PAD="_PAD"
def main(_):
# 1.load data with vocabulary of words and labels
vocabulary_word2index, vocabulary_index2word = create_voabulary(word2vec_model_path=FLAGS.word2vec_model_path,name_scope="seq2seq_attention") # simple='simple'
vocab_size = len(vocabulary_word2index)
print("seq2seq_attention.vocab_size:", vocab_size)
vocabulary_word2index_label, vocabulary_index2word_label = create_voabulary_label(name_scope="seq2seq_attention",use_seq2seq=True)
questionid_question_lists=load_final_test_data(FLAGS.predict_source_file)
test= load_data_predict(vocabulary_word2index,vocabulary_word2index_label,questionid_question_lists)
testX=[]
question_id_list=[]
for tuple in test:
question_id,question_string_list=tuple
question_id_list.append(question_id)
testX.append(question_string_list)
# 2.Data preprocessing: Sequence padding
print("start padding....")
testX2 = pad_sequences(testX, maxlen=FLAGS.sequence_length, value=0.) # padding to max length
print("end padding...")
# 3.create session.
config=tf.ConfigProto()
config.gpu_options.allow_growth=True
with tf.Session(config=config) as sess:
# 4.Instantiate Model
model=seq2seq_attention_model(FLAGS.num_classes, FLAGS.learning_rate, FLAGS.batch_size, FLAGS.decay_steps, FLAGS.decay_rate, FLAGS.sequence_length,
vocab_size, FLAGS.embed_size,FLAGS.hidden_size, FLAGS.is_training,decoder_sent_length=FLAGS.decoder_sent_length,l2_lambda=FLAGS.l2_lambda)
saver=tf.train.Saver()
if os.path.exists(FLAGS.ckpt_dir+"checkpoint"):
print("Restoring Variables from Checkpoint")
saver.restore(sess,tf.train.latest_checkpoint(FLAGS.ckpt_dir))
else:
print("Can't find the checkpoint.going to stop")
return
# 5.feed data, to get logits
number_of_training_data=len(testX2);print("number_of_training_data:",number_of_training_data)
index=0
predict_target_file_f = codecs.open(FLAGS.predict_target_file, 'a', 'utf8')
decoder_input=np.reshape(np.array([vocabulary_word2index_label[_GO]]+[vocabulary_word2index_label[_PAD]]*(FLAGS.decoder_sent_length-1)),[-1,FLAGS.decoder_sent_length])
for start, end in zip(range(0, number_of_training_data, FLAGS.batch_size),range(FLAGS.batch_size, number_of_training_data+1, FLAGS.batch_size)):
predictions,logits=sess.run([model.predictions,model.logits],feed_dict={model.input_x:testX2[start:end],model.decoder_input:decoder_input,model.dropout_keep_prob:1}) #'shape of logits:', ( 1, 1999)
# 6. get lable using logtis
predicted_labels=get_label_using_logits(logits[0],predictions,vocabulary_index2word_label,vocabulary_word2index_label)
# 7. write question id and labels to file system.
write_question_id_with_labels(question_id_list[index],predicted_labels,predict_target_file_f)
index=index+1
predict_target_file_f.close()
def get_label_using_logits(logits, predictions,vocabulary_index2word_label,vocabulary_word2index_label, top_number=5):
#print("logits:",logits.shape) #(6, 2002)
result_list=[]
for i,row in enumerate(logits):
#print("i,",i,"row:",row)
if i!=len(logits)-1: #not include result from last column, which usually it should be <END> TOKEN.
label=process_each_row_get_lable(row,vocabulary_index2word_label,vocabulary_word2index_label,result_list)
result_list.append(label)
return result_list
def process_each_row_get_lable(row,vocabulary_index2word_label,vocabulary_word2index_label,result_list):
"""
:param row: it is a list.length is number of labels. e.g. 2002
:param vocabulary_index2word_label
:param result_list
:return: a lable
"""
label_list=list(np.argsort(row))
label_list.reverse()
#print("label_list:",label_list) # a list,length is number of labels.
for i,index in enumerate(label_list): # if index is not exists, and not _PAD,_END, then it is the label we want.
#print(i,"index:",index)
flag1=vocabulary_index2word_label[index] not in result_list
flag2=index!=vocabulary_word2index_label[_PAD]
flag3=index!=vocabulary_word2index_label[_END]
if flag1 and flag2 and flag3:
#print("going to return ")
return vocabulary_index2word_label[index]
def get_label_using_logitsO(pred_list, vocabulary_index2word_label,vocabulary_word2index_label, top_number=5):
print("pred_list[0]:",pred_list[0]) #(6, 2002) for example.e.g. array([ 310, 1541, 75, 1, 1, 1])
result_list=[]
pred_list_=pred_list.tolist()[0]
print("pred_list_:",pred_list_)
for index in pred_list_:
print("index:",index)
word=vocabulary_index2word_label[index]
print("word:",word) #('index:', 2, ';word:', '_PAD')
result_list.append(word)
return result_list
# write question id and labels to file system.
def write_question_id_with_labels(question_id,labels_list,f):
labels_string=",".join(labels_list)
f.write(question_id+","+labels_string+"\n")
if __name__ == "__main__":
tf.app.run()