-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEDA.py
148 lines (107 loc) · 4.35 KB
/
EDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""-*- coding: utf-8 -*-
DateTime : 2019/1/2 14:18
Author : Peter_Bonnie
FileName : EDA.py
Software: PyCharm
"""
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
#根据特征来可视化数据集
class EDA(object):
"""数据探索分析类"""
def __init__(self):
"""初始化函数"""
@staticmethod
def load_Data(train,test):
train=pd.read_csv(train)
test=pd.read_csv(test)
return train,test
def show_nan_data(self,train,test,num_train,num_test):
"""
根据num的数量来展示数据的缺失情况
"""
###展示训练集的数据
stats = []
for col in train.columns:
stats.append((col, train[col].nunique(), train[col].isnull().sum() * 100 / train.shape[0],
train[col].value_counts(normalize=True, dropna=False).values[0] * 100, train[col].dtype))
stats_df = pd.DataFrame(stats, columns=['Feature', 'Unique_values', 'Percentage of missing values',
'Percentage of values in the biggest category', 'type'])
print(stats_df.sort_values('Percentage of missing values', ascending=False)[:num_train])
###展示测试集的数据
stats = []
for col in test.columns:
stats.append((col, test[col].nunique(), test[col].isnull().sum() * 100 / test.shape[0],
test[col].value_counts(normalize=True, dropna=False).values[0] * 100, train[col].dtype))
stats_df = pd.DataFrame(stats, columns=['Feature', 'Unique_values', 'Percentage of missing values',
'Percentage of values in the biggest category', 'type'])
print(stats_df.sort_values('Percentage of missing values', ascending=False)[:num_test])
def plot_figure_shoulv(self,train,test):
train,test=self.load_Data(train,test)
target_col = "收率"
plt.figure(figsize=(8, 6))
plt.scatter(range(train.shape[0]), np.sort(train[target_col].values))
plt.xlabel('index', fontsize=12)
plt.ylabel('yield', fontsize=12)
plt.show()
plt.figure(figsize=(12, 8))
sns.distplot(train[target_col].values, bins=50, kde=False, color="red")
plt.title("Histogram of yield")
plt.xlabel('yield', fontsize=12)
plt.show()
if __name__=="__main__":
train=pd.read_csv('Data/jinnan_round1_train_20181227.csv', encoding = 'gb18030')
test = pd.read_csv('Data/jinnan_round1_testA_20181227.csv', encoding='gb18030')
# plt.figure()
# train = train[train['收率'] > 0.84]
# x=[i for i in range(train.shape[0])]
# plt.scatter(x,train['收率'].values)
# plt.show()
# print(train.info())
print(train.info())
print("=========object==============")
for col in train.columns:
if train[col].dtype=="object":
print(col)
print("=======float64============")
for col in train.columns:
if train[col].dtype=="float64":
print(col)
print("=======int64=============")
for col in train.columns:
if train[col].dtype=="int64":
print(col)
for col in train.columns:
print(col,train[col].unique(),train[col].isnull().sum())
plt.figure()
plt.subplot(231)
plt.title("yeild distribution info")
plt.hist(train['收率'].values, facecolor='red')
plt.subplot(232)
plt.title("Train_B14")
plt.hist(train["B14"].values)
plt.subplot(233)
plt.title("Test_B14")
plt.hist(test["B14"].values)
plt.tight_layout()
plt.show()
print(train["B12"].value_counts())
print(test["B12"].value_counts())
sub_object = pd.DataFrame()
sub_noobject = pd.DataFrame()
sub_object['id'] = train['样本id'].apply(lambda x: x.split('_')[1]).sort_values()
train['id'] = sub_object['id'].copy()
sub_noobject['id'] = sub_object['id'].copy()
train = train.sort_values(by='id')
train = train.rename(columns={'收率': 'yield'})
del train['id']
del train['样本id']
for col in train.columns:
if train[col].dtype == 'object' and col != 'A25':
sub_object[col] = train[col]
else:
sub_noobject[col] = train[col]
sub_object.to_csv('object.csv', index=False)
sub_noobject.to_csv('noobject.csv', index=False)