-
Notifications
You must be signed in to change notification settings - Fork 38
/
addpyramidnet.lua
246 lines (221 loc) · 7.43 KB
/
addpyramidnet.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
-- Implementation of "Deep Pyramidal Residual Networks"
-- ************************************************************************
-- This code incorporates material from:
-- fb.resnet.torch (https://github.com/facebook/fb.resnet.torch)
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- ************************************************************************
local nn = require 'nn'
require 'cunn'
local Convolution = cudnn.SpatialConvolution
local Avg = cudnn.SpatialAveragePooling
local ReLU = cudnn.ReLU
local Max = nn.SpatialMaxPooling
local SBatchNorm = nn.SpatialBatchNormalization
local function createModel(opt)
local depth = opt.depth
local iChannels
local alpha = 48
-- local alpha = 300
local function round(x)
return math.floor(x+0.5)
end
local function shortcut(nInputPlane, nOutputPlane, stride)
-- Strided, zero-padded identity shortcut
local short = nn.Sequential()
if stride == 2 then
short:add(nn.SpatialAveragePooling(2, 2, 2, 2))
end
if nInputPlane ~= nOutputPlane then
short:add(nn.Padding(1, (nOutputPlane - nInputPlane), 3))
else
short:add(nn.Identity())
end
return short
end
local function basicblock(n, stride)
local nInputPlane = iChannels
iChannels = n
local s = nn.Sequential()
s:add(SBatchNorm(nInputPlane))
s:add(Convolution(nInputPlane,n,3,3,stride,stride,1,1))
s:add(SBatchNorm(n))
s:add(ReLU(true))
s:add(Convolution(n,n,3,3,1,1,1,1))
s:add(SBatchNorm(n))
return nn.Sequential()
:add(nn.ConcatTable()
:add(s)
:add(shortcut(nInputPlane, n, stride)))
:add(nn.CAddTable(true))
end
local function bottleneck(n, stride, type)
local nInputPlane = iChannels
iChannels = n * 4
local s = nn.Sequential()
s:add(SBatchNorm(nInputPlane))
s:add(Convolution(nInputPlane,n,1,1,1,1,0,0))
s:add(SBatchNorm(n))
s:add(ReLU(true))
s:add(Convolution(n,n,3,3,stride,stride,1,1))
s:add(SBatchNorm(n))
s:add(ReLU(true))
s:add(Convolution(n,n*4,1,1,1,1,0,0))
s:add(SBatchNorm(n*4))
return nn.Sequential()
:add(nn.ConcatTable()
:add(s)
:add(shortcut(nInputPlane, n * 4, stride)))
:add(nn.CAddTable(true))
end
-- Creates count residual blocks with specified number of features
local function layer(block, features, count, stride)
local s = nn.Sequential()
if count < 1 then
return s
end
for i=1,count do
s:add(block(features, stride))
end
return s
end
local model = nn.Sequential()
if opt.dataset == 'imagenet' then
-- Configurations for ResNet:
-- num. residual blocks, num features, residual block function
local cfg = {
[18] = {{2, 2, 2, 2}, 512, basicblock},
[34] = {{3, 4, 6, 3}, 512, basicblock},
[50] = {{3, 4, 6, 3}, 2048, bottleneck},
[101] = {{3, 4, 23, 3}, 2048, bottleneck},
[152] = {{3, 8, 36, 3}, 2048, bottleneck},
[200] = {{3, 24, 36, 3}, 2048, bottleneck},
}
assert(cfg[depth], 'Invalid depth: ' .. tostring(depth))
local def, nFeatures, block = table.unpack(cfg[depth])
iChannels = 64
Channeltemp = 64
local addrate = alpha/(def[1]+def[2]+def[3]+def[4])
print(' | PyramidNet-' .. depth .. ' ImageNet')
model:add(Convolution(3,64,7,7,2,2,3,3))
model:add(SBatchNorm(64))
model:add(ReLU(true))
model:add(Max(3,3,2,2,1,1))
Channeltemp = Channeltemp + addrate
model:add(bottleneck(round(Channeltemp), 1, 1, 'first'))
for i=2,def[1] do
Channeltemp = Channeltemp + addrate
model:add(bottleneck(round(Channeltemp), 1, 1))
end
Channeltemp = Channeltemp + addrate
model:add(bottleneck(round(Channeltemp), 2, 1))
for i=2,def[2] do
Channeltemp = Channeltemp + addrate
model:add(bottleneck(round(Channeltemp), 1, 1))
end
Channeltemp = Channeltemp + addrate
model:add(bottleneck(round(Channeltemp), 2, 1))
for i=2,def[3] do
Channeltemp = Channeltemp + addrate
model:add(bottleneck(round(Channeltemp), 1, 1))
end
Channeltemp = Channeltemp + addrate
model:add(bottleneck(round(Channeltemp), 2, 1))
for i=2,def[4] do
Channeltemp = Channeltemp + addrate
model:add(bottleneck(round(Channeltemp), 1, 1))
end
model:add(nn.Copy(nil, nil, true))
model:add(SBatchNorm(iChannels))
model:add(ReLU(true))
model:add(Avg(7, 7, 1, 1))
model:add(nn.View(iChannels):setNumInputDims(3))
model:add(nn.Linear(iChannels, 1000))
elseif opt.dataset == 'cifar10' or opt.dataset == 'cifar100' then
-- local n = (depth - 2) / 6 -- basicblock
local n = (depth - 2) / 9 -- bottleneck
iChannels = 16
local startChannel = 16
local Channeltemp = 16
addChannel = alpha/(3*n)
print(' | PyramidNet-' .. depth .. ' CIFAR')
model:add(Convolution(3,16,3,3,1,1,1,1))
model:add(SBatchNorm(iChannels))
Channeltemp = startChannel
startChannel = startChannel + addChannel
model:add(layer(bottleneck, round(startChannel), 1, 1, 1))
for i=2,n do
Channeltemp = startChannel
startChannel = startChannel + addChannel
model:add(layer(bottleneck, round(startChannel), 1, 1, 1))
end
Channeltemp = startChannel
startChannel = startChannel + addChannel
model:add(layer(bottleneck, round(startChannel), 1, 2, 1))
for i=2,n do
Channeltemp = startChannel
startChannel = startChannel + addChannel
model:add(layer(bottleneck, round(startChannel), 1, 1, 1))
end
Channeltemp = startChannel
startChannel = startChannel + addChannel
model:add(layer(bottleneck, round(startChannel), 1, 2, 1))
for i=2,n do
Channeltemp = startChannel
startChannel = startChannel + addChannel
model:add(layer(bottleneck, round(startChannel), 1, 1, 1))
end
model:add(nn.Copy(nil, nil, true))
model:add(SBatchNorm(iChannels))
model:add(ReLU(true))
model:add(Avg(8, 8, 1, 1))
model:add(nn.View(iChannels):setNumInputDims(3))
if opt.dataset == 'cifar10' then
model:add(nn.Linear(iChannels, 10))
elseif opt.dataset == 'cifar100' then
model:add(nn.Linear(iChannels, 100))
end
else
error('invalid dataset: ' .. opt.dataset)
end
local function ConvInit(name)
for k,v in pairs(model:findModules(name)) do
local n = v.kW*v.kH*v.nOutputPlane
v.weight:normal(0,math.sqrt(2/n))
if cudnn.version >= 4000 then
v.bias = nil
v.gradBias = nil
else
v.bias:zero()
end
end
end
local function BNInit(name)
for k,v in pairs(model:findModules(name)) do
v.weight:fill(1)
v.bias:zero()
end
end
ConvInit('cudnn.SpatialConvolution')
ConvInit('nn.SpatialConvolution')
BNInit('fbnn.SpatialBatchNormalization')
BNInit('cudnn.SpatialBatchNormalization')
BNInit('nn.SpatialBatchNormalization')
for k,v in pairs(model:findModules('nn.Linear')) do
v.bias:zero()
end
model:cuda()
if opt.cudnn == 'deterministic' then
model:apply(function(m)
if m.setMode then m:setMode(1,1,1) end
end)
end
model:get(1).gradInput = nil
return model
end
return createModel