-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
605 lines (576 loc) · 30.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import os
import json
import random
import pickle
import torch
import argparse
import numpy as np
from tqdm import tqdm
from copy import deepcopy
from collections import defaultdict
from sklearn.model_selection import ParameterGrid
from pytorch_lightning import seed_everything
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from main_rewards import RewardsModelAgent
from src.dataloader import Dataset
from metric.myMetrics import Metric
from src.utils import set_seed, get_logger, str2bool, kw_tokenize
from src.model import Supporter
from src.transformers import (
MODEL_WITH_LM_HEAD_MAPPING,
WEIGHTS_NAME,
AdamW,
AutoConfig,
#AutoTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
get_linear_schedule_with_warmup,
)
from src.transformers import (BlenderbotSmallTokenizer, BlenderbotSmallForConditionalGeneration, BlenderbotSmallConfig)
def get_args():
parser = argparse.ArgumentParser()
# dataset
parser.add_argument("--dataset", type=str, default="data/dataset_preproc.p")
parser.add_argument("--emotion_statistic", type=str, default="data/emotion_statistic.json")
parser.add_argument("--vad_dict", type=str, default="data/VAD.json")
parser.add_argument("--conv_graph", type=str, default="data/ConstructConvGraph/conv_graph.json")
parser.add_argument("--kws_vocab", type=str, default="data/ConstructConvGraph/total_kws.pkl")
parser.add_argument("--comet", type=str, default="data/ConstructDataset/Comet")
parser.add_argument("--max_context_length", type=int, default=256)
parser.add_argument("--max_context_kws_length", type=int, default=128)
parser.add_argument("--max_infer_kws_length", type=int, default=128)
parser.add_argument("--max_emotion_labels", type=int, default=10)
parser.add_argument("--max_num_kws", type=int, default=128)
parser.add_argument("--seeker_idx", type=int, default=0)
parser.add_argument("--supporter_idx", type=int, default=1)
parser.add_argument("--context_kws_seeker_idx", type=int, default=0)
parser.add_argument("--context_kws_supporter_idx", type=int, default=1)
parser.add_argument("--context_infer_kws_idx", type=int, default=1)
parser.add_argument("--next_uttr_infer_kws_idx", type=int, default=1)
# model parameters
parser.add_argument("--pretrained_blender_model", type=str, default="blender", help="facebook/blenderbot_small-90M")
parser.add_argument("--pretrained_blender_config", type=str, default="blender", help="facebook/blenderbot_small-90M")
parser.add_argument("--pretrained_blender_tokenizer", type=str, default="blender", help="facebook/blenderbot_small-90M")
parser.add_argument("--emb_dim", type=int, default=512)
parser.add_argument("--pretrained_emo_score_model", type=str, default="emotion")
parser.add_argument("--num_emo_experts", type=int, default=4)
parser.add_argument("--num_kws_experts", type=int, default=4)
parser.add_argument("--max_num_actions", type=int, default=2)
parser.add_argument("--policy_dropout", type=float, default=0.5)
parser.add_argument("--empathy_turn", type=int, default=6)
parser.add_argument("--max_dialog_turn", type=int, default=10)
parser.add_argument("--turn_reward_weight", type=float, default=1.0)
parser.add_argument("--conversation_reward_weight", type=float, default=1.0)
parser.add_argument("--context_reward_weight", type=float, default=1.0)
parser.add_argument("--future_reward_weight", type=float, default=1.0)
parser.add_argument("--entropy_weight", type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99, help='reward discount factor.')
# train parameters
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--train_epochs", type=int, default=3)
parser.add_argument("--pretrain_epochs", type=int, default=5)
parser.add_argument("--early_epochs", type=int, default=0)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--adam_epsilon", type=float, default=1e-8)
parser.add_argument("--warmup_steps", type=int, default=120)
parser.add_argument("--max_grad_norm", type=int, default=1.0)
parser.add_argument("--expert_mse_weight", type=float, default=1e-5)
# other
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--gpu", type=int, default=2)
parser.add_argument("--use_baseline_rl", type=str2bool, default=False)
parser.add_argument("--sliding_window", type=int, default=20)
parser.add_argument("--is_train", type=str2bool, default=False)
parser.add_argument("--is_test", type=str2bool, default=False)
parser.add_argument("--is_evaluate", type=str2bool, default=False)
parser.add_argument("--is_evaluate_coher_elicit", type=str2bool, default=False)
parser.add_argument("--is_grid_search", type=str2bool, default=False)
parser.add_argument("--is_load_grid", type=str2bool, default=False)
parser.add_argument("--load_grid_idx", type=int, default=20)
parser.add_argument("--is_pretrain", type=str2bool, default=False)
parser.add_argument("--is_with_pretrain", type=str2bool, default=False)
parser.add_argument("--is_interact", type=str2bool, default=False)
parser.add_argument("--simulator", type=str, default="dialoggpt", help="[blenderbot, blenderbot-vanilla, dialoggpt, dialoggpt-vanilla]")
parser.add_argument("--num_interaction_turn", type=int, default=10)
# save
parser.add_argument("--save_method", type=str, default="ppl")
parser.add_argument("--save_step", type=int, default=100)
parser.add_argument("--save_model_path", type=str, default="save/model/")
parser.add_argument("--save_simulator_path", type=str, default="simulator/save_model/")
parser.add_argument("--save_log", type=str, default="save/log/")
parser.add_argument("--save_tensorboard", type=str, default="save/tensorboard/")
parser.add_argument("--save_test_log", type=str, default="save/log/test.log")
parser.add_argument("--save_evaluate_log", type=str, default="save/log/evaluate.log")
parser.add_argument("--save_grid_search_log", type=str, default="save/log/grid_search.log")
parser.add_argument("--save_grid_search_eval_log", type=str, default="save/log/grid_search_eval.log")
parser.add_argument("--save_interact_log", type=str, default="save/log/interact.log")
parser.add_argument("--results_file", type=str, default="save/results.json")
parser.add_argument("--interaction_result_file", type=str, default="save/interaction_results.json")
args = parser.parse_args()
cuda_id = "cuda:" + str(args.gpu)
args.device = torch.device(cuda_id) if torch.cuda.is_available() else 'cpu'
return args
class Agent:
def __init__(
self,
args,
additional_special_tokens,
emotion_statistic,
kws_vocab
):
self.args = args
self.pretrained_blender_config = BlenderbotSmallConfig.from_pretrained(args.pretrained_blender_config)
self.pretrained_blender_tokenizer = BlenderbotSmallTokenizer.from_pretrained(args.pretrained_blender_tokenizer)
self.pretrained_blender_tokenizer.add_tokens(additional_special_tokens)
self.pretrained_blender_tokenizer.add_special_tokens({'cls_token': '[CLS]'})
self.pretrained_blender_tokenizer.add_special_tokens({'sep_token': '[SEP]'})
# preprocess data
self.preprocess_data()
# prepare rewards model
rewards_model = self.get_rewards_model(additional_special_tokens)
# prepare model
self.model = Supporter(
args,
self.pretrained_blender_tokenizer,
self.pretrained_blender_config,
emotion_statistic,
kws_vocab,
rewards_model
).to(args.device)
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))
# log
self.log_writer = SummaryWriter(log_dir=args.save_tensorboard)
def prepare_optimizer(self, epochs):
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.args.weight_decay,
},
{"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
self.optimizer = AdamW(
optimizer_grouped_parameters,
lr = self.args.learning_rate,
eps = self.args.adam_epsilon
)
total_steps = len(self.training_dataloader) // self.args.gradient_accumulation_steps * epochs
self.scheduler = get_linear_schedule_with_warmup(
self.optimizer,
num_warmup_steps = self.args.warmup_steps,
num_training_steps = total_steps
)
def preprocess_data(self):
[data_train, data_dev, data_test] = pickle.load(open(self.args.dataset, "rb"))
emotion_statistic = json.load(open(self.args.emotion_statistic, "r", encoding="utf-8"))
# train
training_dataset = Dataset(self.args, data_train, self.pretrained_blender_tokenizer, emotion_statistic)
self.training_dataloader = DataLoader(
dataset=training_dataset,
batch_size=self.args.batch_size,
shuffle=True,
collate_fn=training_dataset.collate_fn,
)
# dev
dev_dataset = Dataset(self.args, data_dev, self.pretrained_blender_tokenizer, emotion_statistic)
self.dev_dataloader = DataLoader(
dataset=dev_dataset,
batch_size=self.args.batch_size,
shuffle=True,
collate_fn=dev_dataset.collate_fn,
)
# test
testing_dataset = Dataset(self.args, data_test, self.pretrained_blender_tokenizer, emotion_statistic)
self.test_dataloader = DataLoader(
dataset=testing_dataset,
batch_size=1,
shuffle=False,
collate_fn=testing_dataset.collate_fn,
)
def save(self, file_name):
torch.save(self.model.state_dict(), file_name)
def load(self, file_name):
self.model.load_state_dict(torch.load(file_name, map_location=self.args.device))
def write_log(self, losses, iter_counter, description):
not_tensor = {"lr"}
for key, value in losses.items():
if key in not_tensor:
self.log_writer.add_scalars(key, {description: value}, iter_counter)
else:
self.log_writer.add_scalars(key, {description: value.item()}, iter_counter)
def pretrain(self, save_path, logger=None):
self.prepare_optimizer(self.args.pretrain_epochs)
self.model.train()
self.model.zero_grad()
self.optimizer.zero_grad()
iter_counter = 1
best_ppl = 1000.0
for epoch in range(1, self.args.pretrain_epochs+1):
train_data_iteration = tqdm(
self.training_dataloader,
desc=f"Pretraining epoch: {epoch}",
total=len(self.training_dataloader),
bar_format="{l_bar}{r_bar}"
)
for train_data in train_data_iteration:
self.model.train()
# modeling
loss_dict = self.model(train_data, is_pretrain=True)
# optimize
loss_dict["loss"].backward()
if iter_counter % self.args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
self.optimizer.step()
self.scheduler.step()
self.model.zero_grad()
self.write_log({"lr": self.scheduler.get_lr()[0]}, iter_counter, "pretraning")
self.write_log(loss_dict, iter_counter, "pretraining")
# dev
if iter_counter % self.args.save_step == 0:
dev_loss_dict = self.dev(epoch, iter_counter, logger=logger, is_pretrain=True)
self.write_log(dev_loss_dict, iter_counter, "pretraining-dev")
dev_ppl = dev_loss_dict["ppl"]
if dev_ppl <= best_ppl:
best_ppl = dev_ppl
self.save(save_path)
iter_counter += 1
print("Pretrain Done! & Saved!")
def train(self, save_path, logger=None):
# prepare_optimizer
self.prepare_optimizer(self.args.train_epochs)
self.model.train()
self.model.zero_grad()
self.optimizer.zero_grad()
iter_counter = 1
best_ppl = 1000.0
best_rewards = 0.0
# training
for epoch in range(1, self.args.train_epochs+1):
# baseline-based-rl
if self.args.use_baseline_rl:
rewards_sum = [0.0]
sliding_idx = 0
train_data_iteration = tqdm(
self.training_dataloader,
desc=f"Training epoch: {epoch}",
total=len(self.training_dataloader),
bar_format="{l_bar}{r_bar}"
)
for train_data in train_data_iteration:
self.model.train()
# baseline-based rl
if self.args.use_baseline_rl:
if len(rewards_sum) >= self.args.sliding_window:
baseline_val = (rewards_sum[sliding_idx] - rewards_sum[sliding_idx-self.args.sliding_window]) / self.args.sliding_window
else:
baseline_val = rewards_sum[sliding_idx]
else:
baseline_val = 0.0
# modeling
loss_dict = self.model(train_data, baseline_val=baseline_val, is_joint_train=True)
# optimize
loss_dict["loss"].backward()
if iter_counter % self.args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
self.optimizer.step()
self.scheduler.step()
self.model.zero_grad()
self.write_log({"lr": self.scheduler.get_lr()[0]}, iter_counter, "traning")
# baseline-based rl
if self.args.use_baseline_rl:
rewards_sum.append(rewards_sum[sliding_idx-1] + loss_dict["rewards"])
sliding_idx += 1
# write log
self.write_log(loss_dict, iter_counter, "training")
# dev
if iter_counter % self.args.save_step == 0:
dev_loss_dict = self.dev(epoch, iter_counter, logger=logger, is_joint_train=True)
self.write_log(dev_loss_dict, iter_counter, "developing")
if epoch <= self.args.early_epochs:
iter_counter += 1
continue
if self.args.save_method == "ppl":
dev_ppl = dev_loss_dict["ppl"]
if dev_ppl <= best_ppl:
best_ppl = dev_ppl
self.save(save_path)
elif self.args.save_method == "rewards":
dev_rewards = dev_loss_dict["rewards"]
if dev_rewards > best_rewards:
best_rewards = dev_rewards
self.save(save_path)
else:
raise ValueError("Save Method Error!")
# update iter
iter_counter += 1
def dev(self, epoch, iter_counter, is_pretrain=False, is_joint_train=False, logger=None):
self.model.eval()
loss_list = defaultdict(list)
loss_dict = defaultdict()
eval_loss = 0.0
eval_num = list()
dev_data_iteration = tqdm(
self.dev_dataloader,
desc=f"dev epoch: {epoch}, iter: {iter_counter}",
total=len(self.dev_dataloader),
bar_format="{l_bar}{r_bar}"
)
with torch.no_grad():
for dev_data in dev_data_iteration:
return_loss_dict = self.model(dev_data, is_pretrain=is_pretrain, is_joint_train=is_joint_train)
for key, value in return_loss_dict.items():
loss_list[key].append(value.item())
eval_loss += return_loss_dict["gen_loss"].item() * (dev_data["target_lm_labels"].cpu().numpy() != -100).astype(np.int).sum()
eval_num.append((dev_data["target_lm_labels"].cpu().numpy() != -100).astype(np.int).sum())
for key, value in loss_list.items():
loss_dict[key] = np.mean(value)
loss_dict["ppl"] = torch.exp(torch.tensor(eval_loss / sum(eval_num)))
if logger is not None:
logger.info(str(loss_dict))
return loss_dict
def test(self, load_path, logger=None):
self.model.eval()
loss_list = defaultdict(list)
loss_dict = defaultdict()
eval_loss = 0.0
eval_num = list()
save_results = list()
test_logger = logger
# Load Model
self.load(load_path)
test_data_iteration = tqdm(
self.test_dataloader,
desc="testing...",
total=len(self.test_dataloader),
bar_format="{l_bar}{r_bar}"
)
with torch.no_grad():
for test_data in test_data_iteration:
return_loss_dict, response_results = self.model(test_data, is_test=True)
for key, value in return_loss_dict.items():
loss_list[key].append(value.item())
eval_loss += return_loss_dict["gen_loss"].item() * (test_data["target_lm_labels"].cpu().numpy() != -100).astype(np.int).sum()
eval_num.append((test_data["target_lm_labels"].cpu().numpy() != -100).astype(np.int).sum())
results = defaultdict()
results["context"] = [" ".join(txt) for txt in test_data["context_txt"][0]]
results["target"] = " ".join(test_data["target_txt"][0])
results["generation"] = response_results[0][response_results[0].index("]")+1:].strip()
results["strategy_generation"] = response_results[0].strip()
# for rewards
results["dialog_turn"] = test_data["dialog_turn"][0]
results["context_seeker_sum_emo_score"] = test_data["context_seeker_sum_emo_score"][0]
results["next_uttr_emotion_score"] = test_data["next_uttr_emotion_score"][0]
results["context_last_infer_kws"] = test_data["context_last_infer_kws"][0]
results["next_uttr_infer_kws"] = test_data["next_uttr_infer_kws"][0]
results["context_txt"] = test_data["context_txt"][0]
results["context_strategy_seqs_txt"] = test_data["context_strategy_seqs_txt"][0]
results["context_role_txt"] = test_data["context_role_txt"][0]
results["context_positive_kws_txt"] = test_data["context_positive_kws_txt"][0]
results["context_negative_kws_txt"] = test_data["context_negative_kws_txt"][0]
results["next_uttr_txt"] = test_data["next_uttr_txt"][0]
results["next_uttr_positive_kws_txt"] = test_data["next_uttr_positive_kws_txt"][0]
results["next_uttr_negative_kws_txt"] = test_data["next_uttr_negative_kws_txt"][0]
results["context_role"] = test_data["context_role"][0]
results["context_emotion_scores"] = test_data["context_emotion_scores"][0]
save_results.append(results)
for key, value in loss_list.items():
loss_dict[key] = np.mean(value)
loss_dict["ppl"] = torch.exp(torch.tensor(eval_loss / sum(eval_num)))
if test_logger is not None:
test_logger.info(str(loss_dict))
with open(self.args.results_file, "w", encoding="utf-8") as f:
json.dump(save_results, f, ensure_ascii=False, indent=2)
return loss_dict
def evaluate(self, logger=None):
evaluate_log = logger
results_file = json.load(open(self.args.results_file, "r", encoding="utf-8"))
target = [results["target"] for results in results_file]
generation = [results["generation"] for results in results_file]
automatic_metrics = Metric(self.pretrained_blender_tokenizer)
for tar, gen in zip(target, generation):
automatic_metrics.forword([tar], gen)
automatic_results, _ = automatic_metrics.close()
if logger is not None:
evaluate_log.info(str(automatic_results))
return automatic_results
def evaluate_coher_elict_metrics(self, logger=None):
evaluate_log = logger
results_file = json.load(open(self.args.results_file, "r", encoding="utf-8"))
results = defaultdict(list)
for line in results_file:
for key, value in line.items():
results[key].append(value)
# Elicitation Scores
response_turn_emotion_score = [
self.model.reward_agent.get_emotion_score(utterance)
for utterance in results["generation"]
]
response_conv_emotion_score = [
self.model.reward_agent.get_emotion_score(utterance)
for utterance in results["generation"]
]
turn_level_elicit_reward, _ = self.model.reward_agent.turn_level_elicitation(results, response_turn_emotion_score)
total_conversation_level_elicit_reward, conversation_level_elicit_rewards_array = self.model.reward_agent.conversation_level_elicitation(results, response_conv_emotion_score)
# conversation_level_elicit_reward = np.mean([reward for reward, turn in zip(conversation_level_elicit_rewards_array, results["dialog_turn"]) if turn >= self.args.empathy_turn])
f1_elicit_reward = 2*turn_level_elicit_reward*total_conversation_level_elicit_reward / (turn_level_elicit_reward+total_conversation_level_elicit_reward)
# Coherence Scores
response_kws = [
list(set([kws for kws in kw_tokenize(utterance) if kws in self.model.reward_agent.total_kws]))
for utterance in results["generation"]
]
# context_coherence_reward, _ = self.model.reward_agent.context_coherence(results, response_kws)
# future_coherence_reward, _ = self.model.reward_agent.future_coherence(results, response_kws)
context_coherence_reward, _, future_coherence_reward, _ = self.model.reward_agent.calc_coherence(results, results["strategy_generation"], response_kws)
f1_coherence_reward = 2*context_coherence_reward*future_coherence_reward/(context_coherence_reward+future_coherence_reward)
coher_elicit_scores = {
"turn_level_elicit_reward": turn_level_elicit_reward,
# "conversation_level_elicit_reward": conversation_level_elicit_reward,
"conversation_level_elicit_reward": total_conversation_level_elicit_reward,
"F1_elicit_reward": f1_elicit_reward,
"context_coherence_reward": context_coherence_reward,
"future_coherence_reward": future_coherence_reward,
"F1_coherence_reward": f1_coherence_reward
}
if logger is not None:
evaluate_log.info("Evaluate Coherence and Elicitation Scores......")
evaluate_log.info(str(coher_elicit_scores))
return coher_elicit_scores
def get_rewards_model(self, additional_special_tokens):
additional_special_tokens.append("[KWS]")
from main_rewards import get_args as get_rewards_args
rewards_args = get_rewards_args()
rewards_args.device = self.args.device
save_forward_path = rewards_args.save_rewards_path + "forward-rewardsmodel.ckpt"
save_backward_path = rewards_args.save_rewards_path + "backward-rewardsmodel.ckpt"
rewards_model_agent = RewardsModelAgent(rewards_args, additional_special_tokens)
rewards_model_agent.model.eval()
with torch.no_grad():
rewards_model_agent.model.load_state_dict(torch.load(save_forward_path, map_location=rewards_args.device))
forward_rewards_model = deepcopy(rewards_model_agent.model)
rewards_model_agent.model.load_state_dict(torch.load(save_backward_path, map_location=rewards_args.device))
backward_rewards_model = deepcopy(rewards_model_agent.model)
return forward_rewards_model, backward_rewards_model, rewards_model_agent.pretrained_tokenizer
def grid_search_train(args, param_grid, additional_special_tokens, emotion_statistic, kw_vocab):
# log
grid_search_log = get_logger(args.save_grid_search_log)
grid_search_eval_log = get_logger(args.save_grid_search_eval_log)
# obtain grid param
grid_counter = ParameterGrid(param_grid)
grid_list = [dict(grid.items()) for grid in grid_counter]
random.shuffle(grid_list)
# load pretrain model
save_pretrain_path = args.save_model_path + "pretrain_supporter.ckpt"
# for saving model
save_grid_search_path = args.save_model_path + "supporter-grid.ckpt"
save_path = args.save_model_path + "supporter.ckpt"
# save search results
if args.is_load_grid:
search_results = {'ppl': 14.9057, 'bleu-1': 17.565652152747056, 'bleu-2': 6.730932192425283, 'dist-1': 4.470718003515907, 'dist-2': 24.95505741644348}
else:
search_results = {"ppl":100.0, "bleu-1":0.0, "bleu-2":0.0, "dist-1":0.0, "dist-2": 0.0}
# grid search
for idx, grid in enumerate(grid_list):
grid_search_log.info(str(idx) + ": Grid Parameters = " + str(grid))
############## For unexpected interruption #######################
if args.is_load_grid:
if idx < args.load_grid_idx: continue
############## For unexpected interruption########################
# change arguments
grid_args = vars(args)
for key in grid:
grid_args[key] = grid[key]
grid_search_log.info(str(idx) + ": Agent Initialization......")
agent = Agent(args, additional_special_tokens, emotion_statistic, kw_vocab)
if args.is_pretrain:
grid_search_log.info(str(idx) + ": Pretraning Start......")
agent.pretrain(save_pretrain_path)
if os.path.exists(save_pretrain_path) and args.is_with_pretrain:
grid_search_log.info(str(idx) + ": Agent Load Pretrain Model from " + save_pretrain_path)
agent.load(save_pretrain_path)
grid_search_log.info(str(idx) + ": Training Start......")
agent.train(save_grid_search_path, logger=grid_search_eval_log)
grid_search_log.info(str(idx) + ": Testing Start......")
test_loss_dict = agent.test(save_grid_search_path)
grid_search_log.info(str(idx) + ": Testing Loss = " + str(test_loss_dict))
grid_search_log.info(str(idx) + ": Evaluating Start......")
automatic_results = agent.evaluate()
grid_search_log.info(str(idx) + ": Automatic Evaluation Results = " + str(automatic_results))
automatic_results["ppl"] = test_loss_dict["ppl"]
# check search targets
achieve_target_count = 0
for target in search_results:
if target == "ppl":
if automatic_results["ppl"] <= search_results["ppl"]:
achieve_target_count += 1
else:
if automatic_results[target] >= search_results[target]:
achieve_target_count += 1
# check whether achieving target
if achieve_target_count >= 3:
agent.save(save_path)
for target in search_results:
search_results[target] = automatic_results[target]
grid_search_log.info(str(idx) + ": Search Results = " + str(search_results))
grid_search_log.info("=============Save Once!=================")
del agent
def main():
# arguments
args = get_args()
# for reproducibility
set_seed(args.seed)
seed_everything(args.seed)
# for model
additional_special_tokens = ["[Question]","[Reflection of feelings]","[Information]","[Restatement or Paraphrasing]","[Others]","[Self-disclosure]","[Affirmation and Reassurance]","[Providing Suggestions]"]
emotion_statistic = json.load(open(args.emotion_statistic,"r",encoding="utf-8"))
kw_vocab = pickle.load(open(args.kws_vocab,"rb"))
agent = Agent(args, additional_special_tokens, emotion_statistic, kw_vocab)
#for save model
save_path = args.save_model_path + "supporter.ckpt"
# for save pretrain model
save_pretrain_path = args.save_model_path + "pretrain_supporter.ckpt"
# logger
eval_logger = get_logger(args.save_evaluate_log)
test_logger = get_logger(args.save_test_log)
eval_logger.info(str(vars(args)))
test_logger.info(str(vars(args)))
# for pretraining
if args.is_pretrain:
eval_logger.info("Pretraining Start......")
agent.pretrain(save_pretrain_path, logger=eval_logger)
# for training
if args.is_train:
if args.is_grid_search:
print("Grid Search Training Start......")
param_grid = {
"learning_rate": [2e-5],
"pretrain_epochs": [5],
"early_epochs": [0],
"train_epochs": [3],
"max_num_actions": [2],
"turn_reward_weight": [0.1, 1, 10],
"conversation_reward_weight": [1, 10, 0.1],
"context_reward_weight": [1],
"future_reward_weight": [0.1]
}
grid_search_train(args, param_grid, additional_special_tokens, emotion_statistic, kw_vocab)
else:
if os.path.exists(save_pretrain_path) and args.is_with_pretrain:
eval_logger.info("Load Pretrained Model from " + save_pretrain_path)
agent.load(save_pretrain_path)
eval_logger.info("Training Start......")
agent.train(save_path, logger=eval_logger)
# for testing
if args.is_test and os.path.exists(save_path):
test_logger.info("Testing Start.....")
test_loss_dict = agent.test(save_path, logger=test_logger)
# for evaluting
if args.is_evaluate and os.path.exists(args.results_file):
test_logger.info("Evaluating Start......")
automatic_results = agent.evaluate(logger=test_logger)
if args.is_evaluate_coher_elicit and os.path.exists(args.results_file):
coher_elicit_scores = agent.evaluate_coher_elict_metrics(logger=test_logger)
if __name__ == "__main__":
main()