forked from microsoft/autogen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_training_log.py
115 lines (103 loc) · 4.57 KB
/
test_training_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import unittest
from tempfile import TemporaryDirectory
from sklearn.datasets import fetch_california_housing
from flaml import AutoML
from flaml.automl.training_log import training_log_reader
class TestTrainingLog(unittest.TestCase):
def test_training_log(self, path="test_training_log.log", estimator_list="auto", use_ray=False):
with TemporaryDirectory() as d:
filename = os.path.join(d, path)
# Run a simple job.
automl = AutoML()
automl_settings = {
"time_budget": 1,
"metric": "mse",
"task": "regression",
"log_file_name": filename,
"log_training_metric": True,
"mem_thres": 1024 * 1024,
"n_jobs": 1,
"model_history": True,
"train_time_limit": 0.1,
"verbose": 3,
# "ensemble": True,
"keep_search_state": True,
"estimator_list": estimator_list,
}
X_train, y_train = fetch_california_housing(return_X_y=True)
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
# Check if the training log file is populated.
self.assertTrue(os.path.exists(filename))
if automl.best_estimator:
estimator, config = automl.best_estimator, automl.best_config
model0 = automl.best_model_for_estimator(estimator)
print(model0.params)
if "n_estimators" in config:
assert model0.params["n_estimators"] == config["n_estimators"]
# train on full data with no time limit
automl._state.time_budget = -1
model, _ = automl._state._train_with_config(estimator, config)
# assuming estimator & config are saved and loaded as follows
automl = AutoML()
automl.fit(
X_train=X_train,
y_train=y_train,
max_iter=1,
task="regression",
estimator_list=[estimator],
n_jobs=1,
starting_points={estimator: config},
use_ray=use_ray,
)
print(automl.best_config)
# then the fitted model should be equivalent to model
assert (
str(model.estimator) == str(automl.model.estimator)
or estimator == "xgboost"
and str(model.estimator.get_dump()) == str(automl.model.estimator.get_dump())
or estimator == "catboost"
and str(model.estimator.get_all_params()) == str(automl.model.estimator.get_all_params())
)
automl.fit(
X_train=X_train,
y_train=y_train,
max_iter=1,
task="regression",
estimator_list=[estimator],
n_jobs=1,
starting_points={estimator: {}},
)
print(automl.best_config)
with training_log_reader(filename) as reader:
count = 0
for record in reader.records():
print(record)
count += 1
self.assertGreater(count, 0)
automl_settings["log_file_name"] = ""
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
if automl._selected:
automl._selected.update(None, 0)
automl = AutoML()
automl.fit(X_train=X_train, y_train=y_train, max_iter=0, task="regression")
def test_illfilename(self):
try:
self.test_training_log("/")
except IsADirectoryError:
print("IsADirectoryError happens as expected in linux.")
except PermissionError:
print("PermissionError happens as expected in windows.")
def test_each_estimator(self):
try:
import ray
ray.shutdown()
ray.init()
use_ray = True
except ImportError:
use_ray = False
self.test_training_log(estimator_list=["xgboost"], use_ray=use_ray)
self.test_training_log(estimator_list=["catboost"], use_ray=use_ray)
self.test_training_log(estimator_list=["extra_tree"], use_ray=use_ray)
self.test_training_log(estimator_list=["rf"], use_ray=use_ray)
self.test_training_log(estimator_list=["lgbm"], use_ray=use_ray)