forked from thunder-project/thunder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_context.py
407 lines (327 loc) · 17.6 KB
/
test_context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import os
import unittest
import json
import tempfile
from nose.tools import assert_equals, assert_true
from numpy import arange, array, array_equal, mod
from numpy import dtype as dtypeFunc
from test_utils import PySparkTestCaseWithOutputDir
from thunder import ThunderContext
_have_image = False
try:
from PIL import Image
_have_image = True
except ImportError:
# PIL not available; skip tests that require it
Image = None
class TestContextLoading(PySparkTestCaseWithOutputDir):
def setUp(self):
super(TestContextLoading, self).setUp()
self.tsc = ThunderContext(self.sc)
@staticmethod
def _findTestResourcesDir(resourcesDirName="resources"):
testDirPath = os.path.dirname(os.path.realpath(__file__))
testResourcesDirPath = os.path.join(testDirPath, resourcesDirName)
if not os.path.isdir(testResourcesDirPath):
raise IOError("Test resources directory "+testResourcesDirPath+" not found")
return testResourcesDirPath
def test_loadStacksAsSeriesWithShuffle(self):
rangeAry = arange(64*128, dtype=dtypeFunc('int16'))
filePath = os.path.join(self.outputdir, "rangeary.stack")
rangeAry.tofile(filePath)
expectedAry = rangeAry.reshape((128, 64), order='F')
rangeSeries = self.tsc.loadImagesAsSeries(filePath, dims=(128, 64))
assert_equals('float32', rangeSeries._dtype) # check before any potential first() calls update this val
rangeSeriesAry = rangeSeries.pack()
assert_equals((128, 64), rangeSeries.dims.count)
assert_equals((128, 64), rangeSeriesAry.shape)
assert_equals('float32', str(rangeSeriesAry.dtype))
assert_true(array_equal(expectedAry, rangeSeriesAry))
def test_load3dStackAsSeriesWithShuffle(self):
rangeAry = arange(32*64*4, dtype=dtypeFunc('int16'))
filePath = os.path.join(self.outputdir, "rangeary.stack")
rangeAry.tofile(filePath)
expectedAry = rangeAry.reshape((32, 64, 4), order='F')
rangeSeries = self.tsc.loadImagesAsSeries(filePath, dims=(32, 64, 4))
assert_equals('float32', rangeSeries._dtype)
rangeSeriesAry = rangeSeries.pack()
assert_equals((32, 64, 4), rangeSeries.dims.count)
assert_equals((32, 64, 4), rangeSeriesAry.shape)
assert_equals('float32', str(rangeSeriesAry.dtype))
assert_true(array_equal(expectedAry, rangeSeriesAry))
def __run_loadMultipleStacksAsSeries(self):
rangeAry = arange(64*128, dtype=dtypeFunc('int16'))
filePath = os.path.join(self.outputdir, "rangeary01.bin")
rangeAry.tofile(filePath)
expectedAry = rangeAry.reshape((128, 64), order='F')
rangeAry2 = arange(64*128, 2*64*128, dtype=dtypeFunc('int16'))
filePath = os.path.join(self.outputdir, "rangeary02.bin")
rangeAry2.tofile(filePath)
expectedAry2 = rangeAry2.reshape((128, 64), order='F')
rangeSeries = self.tsc.loadImagesAsSeries(self.outputdir, dims=(128, 64))
assert_equals('float32', rangeSeries._dtype)
rangeSeriesAry = rangeSeries.pack()
rangeSeriesAry_xpose = rangeSeries.pack(transpose=True)
assert_equals((128, 64), rangeSeries.dims.count)
assert_equals((2, 128, 64), rangeSeriesAry.shape)
assert_equals((2, 64, 128), rangeSeriesAry_xpose.shape)
assert_equals('float32', str(rangeSeriesAry.dtype))
assert_true(array_equal(expectedAry, rangeSeriesAry[0]))
assert_true(array_equal(expectedAry2, rangeSeriesAry[1]))
assert_true(array_equal(expectedAry.T, rangeSeriesAry_xpose[0]))
assert_true(array_equal(expectedAry2.T, rangeSeriesAry_xpose[1]))
def test_loadMultipleMultipointStacksAsSeries(self):
rangeAry = arange(64*128, dtype=dtypeFunc('int16'))
filePath = os.path.join(self.outputdir, "rangeary01.bin")
rangeAry.tofile(filePath)
expectedAry = rangeAry.reshape((32, 32, 8), order='F')
rangeAry2 = arange(64*128, 2*64*128, dtype=dtypeFunc('int16'))
filePath = os.path.join(self.outputdir, "rangeary02.bin")
rangeAry2.tofile(filePath)
expectedAry2 = rangeAry2.reshape((32, 32, 8), order='F')
rangeSeries = self.tsc.loadImagesAsSeries(self.outputdir, dims=(32, 32, 8), nplanes=2)
assert_equals('float32', rangeSeries._dtype)
rangeSeriesAry = rangeSeries.pack()
assert_equals((32, 32, 2), rangeSeries.dims.count)
assert_equals((8, 32, 32, 2), rangeSeriesAry.shape)
assert_equals('float32', str(rangeSeriesAry.dtype))
assert_true(array_equal(expectedAry[:, :, :2], rangeSeriesAry[0]))
assert_true(array_equal(expectedAry[:, :, 2:4], rangeSeriesAry[1]))
assert_true(array_equal(expectedAry[:, :, 4:6], rangeSeriesAry[2]))
assert_true(array_equal(expectedAry[:, :, 6:], rangeSeriesAry[3]))
assert_true(array_equal(expectedAry2[:, :, :2], rangeSeriesAry[4]))
assert_true(array_equal(expectedAry2[:, :, 2:4], rangeSeriesAry[5]))
assert_true(array_equal(expectedAry2[:, :, 4:6], rangeSeriesAry[6]))
assert_true(array_equal(expectedAry2[:, :, 6:], rangeSeriesAry[7]))
@unittest.skipIf(not _have_image, "PIL/pillow not installed or not functional")
def __run_loadTifAsSeries(self):
tmpAry = arange(60*120, dtype=dtypeFunc('uint16'))
rangeAry = mod(tmpAry, 255).astype('uint8').reshape((60, 120))
pilImg = Image.fromarray(rangeAry)
filePath = os.path.join(self.outputdir, "rangetif01.tif")
pilImg.save(filePath)
del pilImg, tmpAry
rangeSeries = self.tsc.loadImagesAsSeries(self.outputdir, inputFormat="tif-stack")
assert_equals('float16', rangeSeries._dtype) # check before any potential first() calls update this val
rangeSeriesAry = rangeSeries.pack()
assert_equals((60, 120), rangeSeries.dims.count) # 2d tif now loaded as 2d image; was 3d with singleton z dim
assert_equals((60, 120), rangeSeriesAry.shape)
assert_equals('float16', str(rangeSeriesAry.dtype))
assert_true(array_equal(rangeAry, rangeSeriesAry))
@unittest.skipIf(not _have_image, "PIL/pillow not installed or not functional")
def test_loadTestTifAsSeriesWithShuffle(self):
testResourcesDir = TestContextLoading._findTestResourcesDir()
imagePath = os.path.join(testResourcesDir, "multilayer_tif", "dotdotdot_lzw.tif")
testimg_pil = Image.open(imagePath)
testimg_arys = list()
testimg_arys.append(array(testimg_pil)) # original shape 70, 75
testimg_pil.seek(1)
testimg_arys.append(array(testimg_pil))
testimg_pil.seek(2)
testimg_arys.append(array(testimg_pil))
rangeSeries = self.tsc.loadImagesAsSeries(imagePath, inputFormat="tif-stack")
assert_true(rangeSeries._dtype.startswith("float"))
rangeSeriesAry = rangeSeries.pack()
rangeSeriesAry_xpose = rangeSeries.pack(transpose=True)
assert_equals((70, 75, 3), rangeSeries.dims.count)
assert_equals((70, 75, 3), rangeSeriesAry.shape)
assert_equals((3, 75, 70), rangeSeriesAry_xpose.shape)
assert_true(rangeSeriesAry.dtype.kind == "f")
assert_true(array_equal(testimg_arys[0], rangeSeriesAry[:, :, 0]))
assert_true(array_equal(testimg_arys[1], rangeSeriesAry[:, :, 1]))
assert_true(array_equal(testimg_arys[2], rangeSeriesAry[:, :, 2]))
assert_true(array_equal(testimg_arys[0].T, rangeSeriesAry_xpose[0]))
assert_true(array_equal(testimg_arys[1].T, rangeSeriesAry_xpose[1]))
assert_true(array_equal(testimg_arys[2].T, rangeSeriesAry_xpose[2]))
@unittest.skipIf(not _have_image, "PIL/pillow not installed or not functional")
def test_loadMultipleTifsAsSeriesWithShuffle(self):
tmpAry = arange(60*120, dtype=dtypeFunc('uint16'))
rangeAry = mod(tmpAry, 255).astype('uint8').reshape((60, 120))
pilImg = Image.fromarray(rangeAry)
filePath = os.path.join(self.outputdir, "rangetif01.tif")
pilImg.save(filePath)
tmpAry = arange(60*120, 2*60*120, dtype=dtypeFunc('uint16'))
rangeAry2 = mod(tmpAry, 255).astype('uint8').reshape((60, 120))
pilImg = Image.fromarray(rangeAry2)
filePath = os.path.join(self.outputdir, "rangetif02.tif")
pilImg.save(filePath)
del pilImg, tmpAry
rangeSeries = self.tsc.loadImagesAsSeries(self.outputdir, inputFormat="tif-stack")
assert_equals('float16', rangeSeries._dtype)
rangeSeriesAry = rangeSeries.pack()
rangeSeriesAry_xpose = rangeSeries.pack(transpose=True)
assert_equals((60, 120), rangeSeries.dims.count) # 2d tif now loaded as 2d image; was 3d with singleton z dim
assert_equals((2, 60, 120), rangeSeriesAry.shape)
assert_equals((2, 120, 60), rangeSeriesAry_xpose.shape)
assert_equals('float16', str(rangeSeriesAry.dtype))
assert_true(array_equal(rangeAry, rangeSeriesAry[0]))
assert_true(array_equal(rangeAry2, rangeSeriesAry[1]))
assert_true(array_equal(rangeAry.T, rangeSeriesAry_xpose[0]))
assert_true(array_equal(rangeAry2.T, rangeSeriesAry_xpose[1]))
@unittest.skipIf(not _have_image, "PIL/pillow not installed or not functional")
def test_loadMultipleMultipointTifsAsSeries(self):
testResourcesDir = TestContextLoading._findTestResourcesDir()
imagesPath = os.path.join(testResourcesDir, "multilayer_tif", "dotdotdot_lzw*.tif")
# load only one file, second is a copy of this one
testimg_pil = Image.open(os.path.join(testResourcesDir, "multilayer_tif", "dotdotdot_lzw.tif"))
testimg_arys = [array(testimg_pil)]
for idx in xrange(1, 3):
testimg_pil.seek(idx)
testimg_arys.append(array(testimg_pil))
rangeSeries = self.tsc.loadImagesAsSeries(imagesPath, inputFormat="tif-stack", nplanes=1)
assert_equals((70, 75), rangeSeries.dims.count)
rangeSeriesAry = rangeSeries.pack()
assert_equals((6, 70, 75), rangeSeriesAry.shape)
for idx in xrange(6):
assert_true(array_equal(testimg_arys[idx % 3], rangeSeriesAry[idx]))
@staticmethod
def _tempFileWithPaths(f, blob):
f.write(blob)
f.flush()
return f.name
def test_loadParams(self):
params = json.dumps({"name": "test1", "value": [1, 2, 3]})
f = tempfile.NamedTemporaryFile()
path = TestContextLoading._tempFileWithPaths(f, params)
d = self.tsc.loadParams(path)
assert(d.names() == ["test1"])
assert(array_equal(d.values(), [1, 2, 3]))
params = json.dumps([{"name": "test0", "value": [1, 2, 3]},
{"name": "test1", "value": [4, 5, 6]}])
f = tempfile.NamedTemporaryFile()
path = TestContextLoading._tempFileWithPaths(f, params)
d = self.tsc.loadParams(path)
assert(d.names() == ["test0", "test1"])
assert(array_equal(d.values(), [[1, 2, 3], [4, 5, 6]]))
assert(array_equal(d.values("test0"), [1, 2, 3]))
def test_loadSeriesFromArray(self):
target = array([[0, 1], [0, 2]])
d1 = self.tsc.loadSeriesFromArray([[0, 1], [0, 2]])
d2 = self.tsc.loadSeriesFromArray(array([[0, 1], [0, 2]]))
assert(array_equal(d1.collectValuesAsArray(), target))
assert(d1.keys().collect(), [(0,), (1,)])
assert(array_equal(d2.collectValuesAsArray(), target))
assert(d2.keys().collect(), [(0,), (1,)])
target = array([[0, 1]])
d1 = self.tsc.loadSeriesFromArray([0, 1])
d2 = self.tsc.loadSeriesFromArray(array([0, 1]))
assert(array_equal(d1.collectValuesAsArray(), target))
assert(d1.keys().collect(), [(0,)])
assert(array_equal(d2.collectValuesAsArray(), target))
assert(d2.keys().collect(), [(0,)])
def test_loadImagesFromArray(self):
target = array([[[0, 1], [0, 2]]])
d1 = self.tsc.loadImagesFromArray([[0, 1], [0, 2]])
d2 = self.tsc.loadImagesFromArray(array([[0, 1], [0, 2]]))
assert(array_equal(d1.collectValuesAsArray(), target))
assert(d1.keys().collect() == [0])
assert(array_equal(d2.collectValuesAsArray(), target))
assert(d2.keys().collect() == [0])
target = array([[[0, 1], [0, 2]], [[0, 1], [0, 2]]])
d1 = self.tsc.loadImagesFromArray([[[0, 1], [0, 2]], [[0, 1], [0, 2]]])
d2 = self.tsc.loadImagesFromArray(array([[[0, 1], [0, 2]], [[0, 1], [0, 2]]]))
assert(array_equal(d1.collectValuesAsArray(), target))
assert(d1.keys().collect() == [0, 1])
assert(array_equal(d2.collectValuesAsArray(), target))
assert(d2.keys().collect() == [0, 1])
class TestContextWriting(PySparkTestCaseWithOutputDir):
def setUp(self):
super(TestContextWriting, self).setUp()
self.tsc = ThunderContext(self.sc)
def test_export_npy(self):
from numpy import load
a = array([[1, 2], [2, 3]])
filename = self.outputdir + "/test.npy"
self.tsc.export(a, filename)
aa = load(filename)
assert(array_equal(aa, a))
filename = self.outputdir + "/test"
self.tsc.export(a, filename, outputFormat="npy", overwrite=True)
aa = load(filename + ".npy")
assert(array_equal(aa, a))
def test_export_mat(self):
from scipy.io import loadmat
a = array([[1, 2], [2, 3]])
filename = self.outputdir + "/test.mat"
self.tsc.export(a, filename)
aa = loadmat(filename)
assert(array_equal(aa['test'], a))
filename = self.outputdir + "/test"
self.tsc.export(a, filename, outputFormat="mat", overwrite=True)
aa = loadmat(filename + ".mat")
assert(array_equal(aa['test'], a))
filename = self.outputdir + "/test"
self.tsc.export(a, filename, outputFormat="mat", varname="tmp", overwrite=True)
aa = loadmat(filename + ".mat")
assert(array_equal(aa['tmp'], a))
def test_export_txt(self):
from numpy import loadtxt
a = array([[1, 2], [2, 3]])
filename = self.outputdir + "/test.txt"
self.tsc.export(a, filename)
aa = loadtxt(filename)
assert(array_equal(aa, a))
filename = self.outputdir + "/test"
self.tsc.export(a, filename, outputFormat="txt", overwrite=True)
aa = loadtxt(filename + ".txt")
assert(array_equal(aa, a))
class TestLoadIrregularImages(PySparkTestCaseWithOutputDir):
def setUp(self):
super(TestLoadIrregularImages, self).setUp()
self.tsc = ThunderContext(self.sc)
def _generate_array(self, dtype):
self.ary = arange(256, dtype=dtypeFunc(dtype)).reshape((16, 4, 4)) # 16 pages of 4x4 images
def _write_tiffs(self):
import thunder.rdds.fileio.tifffile as tifffile
writer1 = tifffile.TiffWriter(os.path.join(self.outputdir, "tif01.tif"))
writer1.save(self.ary[:8].transpose((0, 2, 1)), photometric="minisblack") # write out 8 pages
writer1.close()
del writer1
writer2 = tifffile.TiffWriter(os.path.join(self.outputdir, "tif02.tif"))
writer2.save(self.ary.transpose((0, 2, 1)), photometric="minisblack") # write out all 16 pages
writer2.close()
del writer2
def _write_stacks(self):
with open(os.path.join(self.outputdir, "stack01.bin"), "w") as f:
self.ary[:8].tofile(f)
with open(os.path.join(self.outputdir, "stack02.bin"), "w") as f:
self.ary.tofile(f)
def _run_tst(self, imgType, dtype):
self._generate_array(dtype)
if imgType.lower().startswith('tif'):
self._write_tiffs()
inputFormat, ext, dims = "tif", "tif", None
elif imgType.lower().startswith("stack"):
self._write_stacks()
inputFormat, ext, dims = "stack", "bin", (16, 4, 4)
else:
raise ValueError("Unknown imgType: %s" % imgType)
# with nplanes=2, this should yield a 12 record Images object, which after converting to
# a series and packing should be a 12 x 4 x 4 x 2 array.
# renumber=True is required in this case in order to ensure sensible results.
series = self.tsc.loadImagesAsSeries(self.outputdir, inputFormat=inputFormat, ext=ext,
blockSize=(2, 1, 1), blockSizeUnits="pixels",
nplanes=2, dims=dims, renumber=True)
packedAry = series.pack()
assert_equals((12, 4, 4, 2), packedAry.shape)
assert_true(array_equal(self.ary[0:2], packedAry[0].T))
assert_true(array_equal(self.ary[2:4], packedAry[1].T))
assert_true(array_equal(self.ary[4:6], packedAry[2].T))
assert_true(array_equal(self.ary[6:8], packedAry[3].T)) # first image was only 4 2-plane records
assert_true(array_equal(self.ary[0:2], packedAry[4].T))
assert_true(array_equal(self.ary[2:4], packedAry[5].T))
assert_true(array_equal(self.ary[4:6], packedAry[6].T))
assert_true(array_equal(self.ary[6:8], packedAry[7].T))
assert_true(array_equal(self.ary[8:10], packedAry[8].T))
assert_true(array_equal(self.ary[10:12], packedAry[9].T))
assert_true(array_equal(self.ary[12:14], packedAry[10].T))
assert_true(array_equal(self.ary[14:16], packedAry[11].T))
def test_loadMultipleSignedIntTifsAsSeries(self):
self._run_tst('tif', 'int16')
def test_loadMultipleUnsignedIntTifsAsSeries(self):
self._run_tst('tif', 'uint16')
# can't currently have binary stack files of different sizes, since we have
# fixed `dims` for all stacks. leaving in place b/c it seems like something
# to support soon.
# def test_loadMultipleBinaryStacksAsSeries(self):
# self._run_tst('stack', 'uint16')