|
| 1 | + |
| 2 | +# 实现图数据结构 |
| 3 | + |
| 4 | +## 什么是图 |
| 5 | + |
| 6 | +图是类似树这样的数据结构,与树不同的是它可以没有根节点,而且根据类型不同可分为有向图和无向图等。 |
| 7 | + |
| 8 | +在现实中可能存在这样的图,满足以下条件。 |
| 9 | + |
| 10 | +``` |
| 11 | +A -> B |
| 12 | +A -> C |
| 13 | +B -> C |
| 14 | +B -> D |
| 15 | +C -> D |
| 16 | +D -> C |
| 17 | +E -> F |
| 18 | +F -> C |
| 19 | +``` |
| 20 | + |
| 21 | +这样的图用Python可以使用字典来表达这样的数据结构,如{A: [B, C], B: [C, D], C: [D], D: [C], E: [F], F: [C]}。 |
| 22 | + |
| 23 | +## 如何实现图 |
| 24 | + |
| 25 | +要实现图的遍历等功能,以上面的图为例,我们首先要定义数据结构和函数。因为要递归实现,我们需要把start、end传进去,而且还要给历史走过的path。 |
| 26 | + |
| 27 | +``` |
| 28 | +def find_path(graph, start, end, path=[]): |
| 29 | + pass |
| 30 | +
|
| 31 | +def find_all_paths(graph, start, end, path=[]): |
| 32 | + pass |
| 33 | +
|
| 34 | +def find_shortest_path(graph, start, end, path=[]): |
| 35 | + pass |
| 36 | +
|
| 37 | +graph = {'a':['b', 'c'], 'b': ['c', 'd'], 'c': ['d'], 'd': ['c'], 'e': ['f'], 'f': ['c']} |
| 38 | +``` |
| 39 | + |
| 40 | +首先我们来实现find_path函数,用到了回溯法,从起点开始,如果起点就是终点那先返回,然后遍历每个子节点,注意要确保不是环路而且找了非空的路径才返回。 |
| 41 | + |
| 42 | +``` |
| 43 | +def find_path(graph, start, end, path=[]): |
| 44 | + path = path + [start] |
| 45 | +
|
| 46 | + if start == end: |
| 47 | + return [path] |
| 48 | +
|
| 49 | + for node in graph[start]: |
| 50 | + if node not in path: |
| 51 | + new_path = find_path(graph, node, end, path) |
| 52 | + if new_path: |
| 53 | + return new_path |
| 54 | +
|
| 55 | +graph = {'a':['b', 'c'], 'b': ['c', 'd'], 'c': ['d'], 'd': ['c'], 'e': ['f'], 'f': ['c']} |
| 56 | +print(find_path(graph, 'a', 'd')) |
| 57 | +# Print [['a', 'b', 'c', 'd']] |
| 58 | +``` |
| 59 | + |
| 60 | +然后我们来实现find_all_paths函数, |
| 61 | + |
| 62 | +``` |
| 63 | +def find_all_paths(graph, start, end, path=[]): |
| 64 | + path = path + [start] |
| 65 | +
|
| 66 | + if start == end: |
| 67 | + return [path] |
| 68 | +
|
| 69 | + all_paths = [] |
| 70 | + for node in graph[start]: |
| 71 | + if node not in path: |
| 72 | + new_paths = find_all_paths(graph, node, end, path) |
| 73 | + for new_path in new_paths: |
| 74 | + all_paths.append(new_path) |
| 75 | +
|
| 76 | + return all_paths |
| 77 | +
|
| 78 | +graph = {'a':['b', 'c'], 'b': ['c', 'd'], 'c': ['d'], 'd': ['c'], 'e': ['f'], 'f': ['c']} |
| 79 | +print(find_all_paths(graph, 'a', 'd')) |
| 80 | +# Print [['a', 'b', 'c', 'd'], ['a', 'b', 'd'], ['a', 'c', 'd']] |
| 81 | +``` |
| 82 | + |
| 83 | +最后来实现获取最短路径。 |
| 84 | + |
| 85 | +``` |
| 86 | +def find_shortest_path(graph, start, end, path=[]): |
| 87 | + path = path + [start] |
| 88 | +
|
| 89 | + if start == end: |
| 90 | + return path |
| 91 | +
|
| 92 | + result_path = None |
| 93 | + for node in graph[start]: |
| 94 | + if node not in path: |
| 95 | + new_path = find_shortest_path(graph, node, end, path) |
| 96 | + if result_path == None: |
| 97 | + result_path = new_path |
| 98 | + elif len(result_path) > len(new_path): |
| 99 | + result_path = new_path |
| 100 | +
|
| 101 | + return result_path |
| 102 | +
|
| 103 | +graph = {'a':['b', 'c'], 'b': ['c', 'd'], 'c': ['d'], 'd': ['c'], 'e': ['f'], 'f': ['c']} |
| 104 | +print(find_shortest_path(graph, 'a', 'd')) |
| 105 | +# Print ['a', 'b', 'd'] |
| 106 | +``` |
| 107 | + |
| 108 | +这是本章内容,希望对你有所帮助。[进入下一章](./015图.md) |
0 commit comments