From eb84a8fe33e3b48c751d23fc0904a48ddb526a90 Mon Sep 17 00:00:00 2001 From: Yoni Nazarathy Date: Fri, 3 Jul 2020 12:39:23 +1000 Subject: [PATCH] update text --- 9_chapter/kMeans.jl | 5 +++-- 9_chapter/kMeansManual.jl | 9 ++++----- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/9_chapter/kMeans.jl b/9_chapter/kMeans.jl index 68b7272..7d022ee 100644 --- a/9_chapter/kMeans.jl +++ b/9_chapter/kMeans.jl @@ -1,11 +1,12 @@ using Clustering, RDatasets, Random, Measures, Plots; pyplot() Random.seed!(0) +K = 3 df = dataset("cluster", "xclara") data = copy(convert(Array{Float64}, df)') -seeds = initseeds(:rand, data, 3) -xclaraKmeans = kmeans(data, 3, init = seeds) +seeds = initseeds(:rand, data, K) +xclaraKmeans = kmeans(data, K, init = seeds) println("Number of clusters: ", nclusters(xclaraKmeans)) println("Counts of clusters: ", counts(xclaraKmeans)) diff --git a/9_chapter/kMeansManual.jl b/9_chapter/kMeansManual.jl index 76a7de6..ae6fae7 100644 --- a/9_chapter/kMeansManual.jl +++ b/9_chapter/kMeansManual.jl @@ -1,11 +1,10 @@ using RDatasets, Distributions, Random Random.seed!(0) -k = 3 - -xclara = dataset("cluster", "xclara") -n,_ = size(xclara) -dataPoints = [convert(Array{Float64,1},xclara[i,:]) for i in 1:n] +K = 3 +df = dataset("cluster", "xclara") +n,_ = size(df) +dataPoints = [convert(Array{Float64,1},df[i,:]) for i in 1:n] shuffle!(dataPoints) xMin,xMax = minimum(first.(dataPoints)),maximum(first.(dataPoints))