forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprim.py
152 lines (121 loc) · 3.42 KB
/
prim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""Prim's Algorithm.
Determines the minimum spanning tree(MST) of a graph using the Prim's Algorithm.
Details: https://en.wikipedia.org/wiki/Prim%27s_algorithm
"""
import heapq as hq
import math
from typing import Iterator
class Vertex:
"""Class Vertex."""
def __init__(self, id):
"""
Arguments:
id - input an id to identify the vertex
Attributes:
neighbors - a list of the vertices it is linked to
edges - a dict to store the edges's weight
"""
self.id = str(id)
self.key = None
self.pi = None
self.neighbors = []
self.edges = {} # {vertex:distance}
def __lt__(self, other):
"""Comparison rule to < operator."""
return self.key < other.key
def __repr__(self):
"""Return the vertex id."""
return self.id
def add_neighbor(self, vertex):
"""Add a pointer to a vertex at neighbor's list."""
self.neighbors.append(vertex)
def add_edge(self, vertex, weight):
"""Destination vertex and weight."""
self.edges[vertex.id] = weight
def connect(graph, a, b, edge):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1])
graph[b - 1].add_neighbor(graph[a - 1])
# add the edges:
graph[a - 1].add_edge(graph[b - 1], edge)
graph[b - 1].add_edge(graph[a - 1], edge)
def prim(graph: list, root: Vertex) -> list:
"""Prim's Algorithm.
Runtime:
O(mn) with `m` edges and `n` vertices
Return:
List with the edges of a Minimum Spanning Tree
Usage:
prim(graph, graph[0])
"""
a = []
for u in graph:
u.key = math.inf
u.pi = None
root.key = 0
q = graph[:]
while q:
u = min(q)
q.remove(u)
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
v.pi = u
v.key = u.edges[v.id]
for i in range(1, len(graph)):
a.append((int(graph[i].id) + 1, int(graph[i].pi.id) + 1))
return a
def prim_heap(graph: list, root: Vertex) -> Iterator[tuple]:
"""Prim's Algorithm with min heap.
Runtime:
O((m + n)log n) with `m` edges and `n` vertices
Yield:
Edges of a Minimum Spanning Tree
Usage:
prim(graph, graph[0])
"""
for u in graph:
u.key = math.inf
u.pi = None
root.key = 0
h = list(graph)
hq.heapify(h)
while h:
u = hq.heappop(h)
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
v.pi = u
v.key = u.edges[v.id]
hq.heapify(h)
for i in range(1, len(graph)):
yield (int(graph[i].id) + 1, int(graph[i].pi.id) + 1)
def test_vector() -> None:
"""
# Creates a list to store x vertices.
>>> x = 5
>>> G = [Vertex(n) for n in range(x)]
>>> connect(G, 1, 2, 15)
>>> connect(G, 1, 3, 12)
>>> connect(G, 2, 4, 13)
>>> connect(G, 2, 5, 5)
>>> connect(G, 3, 2, 6)
>>> connect(G, 3, 4, 6)
>>> connect(G, 0, 0, 0) # Generate the minimum spanning tree:
>>> G_heap = G[:]
>>> MST = prim(G, G[0])
>>> MST_heap = prim_heap(G, G[0])
>>> for i in MST:
... print(i)
(2, 3)
(3, 1)
(4, 3)
(5, 2)
>>> for i in MST_heap:
... print(i)
(2, 3)
(3, 1)
(4, 3)
(5, 2)
"""
if __name__ == "__main__":
import doctest
doctest.testmod()