The sqlite-utils
command-line tool can be used to manipulate SQLite databases in a number of different ways.
Once :ref:`installed <installation>` the tool should be available as sqlite-utils
. It can also be run using python -m sqlite_utils
.
- Running SQL queries
- Querying data directly using an in-memory database
- Returning all rows in a table
- Listing tables
- Listing views
- Listing indexes
- Listing triggers
- Showing the schema
- Analyzing tables
- Creating an empty database
- Inserting JSON data
- Inserting CSV or TSV data
- Inserting unstructured data with --lines and --text
- Applying conversions while inserting data
- Insert-replacing data
- Upserting data
- Executing SQL in bulk
- Inserting data from files
- Converting data in columns
- Creating tables
- Duplicating tables
- Dropping tables
- Transforming tables
- Extracting columns into a separate table
- Creating views
- Dropping views
- Adding columns
- Adding columns automatically on insert/update
- Adding foreign key constraints
- Setting defaults and not null constraints
- Creating indexes
- Configuring full-text search
- Executing searches
- Enabling cached counts
- Optimizing index usage with ANALYZE
- Vacuum
- Optimize
- WAL mode
- Dumping the database to SQL
- Loading SQLite extensions
- SpatiaLite helpers
- Installing packages
- Uninstalling packages
The sqlite-utils query
command lets you run queries directly against a SQLite database file. This is the default subcommand, so the following two examples work the same way:
$ sqlite-utils query dogs.db "select * from dogs" $ sqlite-utils dogs.db "select * from dogs"
Note
In Python: :ref:`db.query() <python_api_query>` CLI reference: :ref:`sqlite-utils query <cli_ref_query>`
The default format returned for queries is JSON:
$ sqlite-utils dogs.db "select * from dogs" [{"id": 1, "age": 4, "name": "Cleo"}, {"id": 2, "age": 2, "name": "Pancakes"}]
Use --nl
to get back newline-delimited JSON objects:
$ sqlite-utils dogs.db "select * from dogs" --nl {"id": 1, "age": 4, "name": "Cleo"} {"id": 2, "age": 2, "name": "Pancakes"}
You can use --arrays
to request arrays instead of objects:
$ sqlite-utils dogs.db "select * from dogs" --arrays [[1, 4, "Cleo"], [2, 2, "Pancakes"]]
You can also combine --arrays
and --nl
:
$ sqlite-utils dogs.db "select * from dogs" --arrays --nl [1, 4, "Cleo"] [2, 2, "Pancakes"]
If you want to pretty-print the output further, you can pipe it through python -mjson.tool
:
$ sqlite-utils dogs.db "select * from dogs" | python -mjson.tool [ { "id": 1, "age": 4, "name": "Cleo" }, { "id": 2, "age": 2, "name": "Pancakes" } ]
Binary strings are not valid JSON, so BLOB columns containing binary data will be returned as a JSON object containing base64 encoded data, that looks like this:
$ sqlite-utils dogs.db "select name, content from images" | python -mjson.tool [ { "name": "transparent.gif", "content": { "$base64": true, "encoded": "R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7" } } ]
If one of your columns contains JSON, by default it will be returned as an escaped string:
$ sqlite-utils dogs.db "select * from dogs" | python -mjson.tool [ { "id": 1, "name": "Cleo", "friends": "[{\"name\": \"Pancakes\"}, {\"name\": \"Bailey\"}]" } ]
You can use the --json-cols
option to automatically detect these JSON columns and output them as nested JSON data:
$ sqlite-utils dogs.db "select * from dogs" --json-cols | python -mjson.tool [ { "id": 1, "name": "Cleo", "friends": [ { "name": "Pancakes" }, { "name": "Bailey" } ] } ]
You can use the --csv
option to return results as CSV:
$ sqlite-utils dogs.db "select * from dogs" --csv id,age,name 1,4,Cleo 2,2,Pancakes
This will default to including the column names as a header row. To exclude the headers, use --no-headers
:
$ sqlite-utils dogs.db "select * from dogs" --csv --no-headers 1,4,Cleo 2,2,Pancakes
Use --tsv
instead of --csv
to get back tab-separated values:
$ sqlite-utils dogs.db "select * from dogs" --tsv id age name 1 4 Cleo 2 2 Pancakes
You can use the --table
option (or -t
shortcut) to output query results as a table:
$ sqlite-utils dogs.db "select * from dogs" --table id age name ---- ----- -------- 1 4 Cleo 2 2 Pancakes
You can use the --fmt
option to specify different table formats, for example rst
for reStructuredText:
$ sqlite-utils dogs.db "select * from dogs" --fmt rst ==== ===== ======== id age name ==== ===== ======== 1 4 Cleo 2 2 Pancakes ==== ===== ========
Available --fmt
options are:
asciidoc
double_grid
double_outline
fancy_grid
fancy_outline
github
grid
heavy_grid
heavy_outline
html
jira
latex
latex_booktabs
latex_longtable
latex_raw
mediawiki
mixed_grid
mixed_outline
moinmoin
orgtbl
outline
pipe
plain
presto
pretty
psql
rounded_grid
rounded_outline
rst
simple
simple_grid
simple_outline
textile
tsv
unsafehtml
youtrack
This list can also be found by running sqlite-utils query --help
.
If your table contains binary data in a BLOB
you can use the --raw
option to output specific columns directly to standard out.
For example, to retrieve a binary image from a BLOB
column and store it in a file you can use the following:
$ sqlite-utils photos.db "select contents from photos where id=1" --raw > myphoto.jpg
You can pass named parameters to the query using -p
:
$ sqlite-utils query dogs.db "select :num * :num2" -p num 5 -p num2 6 [{":num * :num2": 30}]
These will be correctly quoted and escaped in the SQL query, providing a safe way to combine other values with SQL.
If you execute an UPDATE
, INSERT
or DELETE
query the command will return the number of affected rows:
$ sqlite-utils dogs.db "update dogs set age = 5 where name = 'Cleo'" [{"rows_affected": 1}]
You can use the --functions
option to pass a block of Python code that defines additional functions which can then be called by your SQL query.
This example defines a function which extracts the domain from a URL:
$ sqlite-utils query sites.db "select url, domain(url) from urls" --functions ' from urllib.parse import urlparse def domain(url): return urlparse(url).netloc '
Every callable object defined in the block will be registered as a SQL function with the same name, with the exception of functions with names that begin with an underscore.
You can load SQLite extension modules using the --load-extension
option, see :ref:`cli_load_extension`.
$ sqlite-utils dogs.db "select spatialite_version()" --load-extension=spatialite [{"spatialite_version()": "4.3.0a"}]
SQLite supports cross-database SQL queries, which can join data from tables in more than one database file.
You can attach one or more additional databases using the --attach
option, providing an alias to use for that database and the path to the SQLite file on disk.
This example attaches the books.db
database under the alias books
and then runs a query that combines data from that database with the default dogs.db
database:
sqlite-utils dogs.db --attach books books.db \ 'select * from sqlite_master union all select * from books.sqlite_master'
Note
In Python: :ref:`db.attach() <python_api_attach>`
The sqlite-utils memory
command works similar to sqlite-utils query
, but allows you to execute queries against an in-memory database.
You can also pass this command CSV or JSON files which will be loaded into a temporary in-memory table, allowing you to execute SQL against that data without a separate step to first convert it to SQLite.
Without any extra arguments, this command executes SQL against the in-memory database directly:
$ sqlite-utils memory 'select sqlite_version()' [{"sqlite_version()": "3.35.5"}]
It takes all of the same output formatting options as :ref:`sqlite-utils query <cli_query>`: --csv
and --csv
and --table
and --nl
:
$ sqlite-utils memory 'select sqlite_version()' --csv sqlite_version() 3.35.5 $ sqlite-utils memory 'select sqlite_version()' --fmt grid +--------------------+ | sqlite_version() | +====================+ | 3.35.5 | +--------------------+
If you have data in CSV or JSON format you can load it into an in-memory SQLite database and run queries against it directly in a single command using sqlite-utils memory
like this:
$ sqlite-utils memory data.csv "select * from data"
You can pass multiple files to the command if you want to run joins between data from different files:
$ sqlite-utils memory one.csv two.json "select * from one join two on one.id = two.other_id"
If your data is JSON it should be the same format supported by the :ref:`sqlite-utils insert command <cli_inserting_data>` - so either a single JSON object (treated as a single row) or a list of JSON objects.
CSV data can be comma- or tab- delimited.
The in-memory tables will be named after the files without their extensions. The tool also sets up aliases for those tables (using SQL views) as t1
, t2
and so on, or you can use the alias t
to refer to the first table:
$ sqlite-utils memory example.csv "select * from t"
If two files have the same name they will be assigned a numeric suffix:
$ sqlite-utils memory foo/data.csv bar/data.csv "select * from data_2"
To read from standard input, use either -
or stdin
as the filename - then use stdin
or t
or t1
as the table name:
$ cat example.csv | sqlite-utils memory - "select * from stdin"
Incoming CSV data will be assumed to use utf-8
. If your data uses a different character encoding you can specify that with --encoding
:
$ cat example.csv | sqlite-utils memory - "select * from stdin" --encoding=latin-1
If you are joining across multiple CSV files they must all use the same encoding.
Column types will be automatically detected in CSV or TSV data, using the same mechanism as --detect-types
described in :ref:`cli_insert_csv_tsv`. You can pass the --no-detect-types
option to disable this automatic type detection and treat all CSV and TSV columns as TEXT
.
By default, sqlite-utils memory
will attempt to detect the incoming data format (JSON, TSV or CSV) automatically.
You can instead specify an explicit format by adding a :csv
, :tsv
, :json
or :nl
(for newline-delimited JSON) suffix to the filename. For example:
$ sqlite-utils memory one.dat:csv two.dat:nl "select * from one union select * from two"
Here the contents of one.dat
will be treated as CSV and the contents of two.dat
will be treated as newline-delimited JSON.
To explicitly specify the format for data piped into the tool on standard input, use stdin:format
- for example:
$ cat one.dat | sqlite-utils memory stdin:csv "select * from stdin"
The :ref:`attach option <cli_query_attach>` can be used to attach database files to the in-memory connection, enabling joins between in-memory data loaded from a file and tables in existing SQLite database files. An example:
$ echo "id\n1\n3\n5" | sqlite-utils memory - --attach trees trees.db \ "select * from trees.trees where rowid in (select id from stdin)"
Here the --attach trees trees.db
option makes the trees.db
database available with an alias of trees
.
select * from trees.trees where ...
can then query the trees
table in that database.
The CSV data that was piped into the script is available in the stdin
table, so ... where rowid in (select id from stdin)
can be used to return rows from the trees
table that match IDs that were piped in as CSV content.
To see the in-memory database schema that would be used for a file or for multiple files, use --schema
:
% sqlite-utils memory dogs.csv --schema CREATE TABLE [dogs] ( [id] INTEGER, [age] INTEGER, [name] TEXT ); CREATE VIEW t1 AS select * from [dogs]; CREATE VIEW t AS select * from [dogs];
You can run the equivalent of the :ref:`analyze-tables <cli_analyze_tables>` command using --analyze
:
% sqlite-utils memory dogs.csv --analyze dogs.id: (1/3) Total rows: 2 Null rows: 0 Blank rows: 0 Distinct values: 2 dogs.name: (2/3) Total rows: 2 Null rows: 0 Blank rows: 0 Distinct values: 2 dogs.age: (3/3) Total rows: 2 Null rows: 0 Blank rows: 0 Distinct values: 2
You can output SQL that will both create the tables and insert the full data used to populate the in-memory database using --dump
:
% sqlite-utils memory dogs.csv --dump BEGIN TRANSACTION; CREATE TABLE [dogs] ( [id] INTEGER, [age] INTEGER, [name] TEXT ); INSERT INTO "dogs" VALUES('1','4','Cleo'); INSERT INTO "dogs" VALUES('2','2','Pancakes'); CREATE VIEW t1 AS select * from [dogs]; CREATE VIEW t AS select * from [dogs]; COMMIT;
Passing --save other.db
will instead use that SQL to populate a new database file:
% sqlite-utils memory dogs.csv --save dogs.db
These features are mainly intended as debugging tools - for much more finely grained control over how data is inserted into a SQLite database file see :ref:`cli_inserting_data` and :ref:`cli_insert_csv_tsv`.
You can return every row in a specified table using the rows
command:
$ sqlite-utils rows dogs.db dogs [{"id": 1, "age": 4, "name": "Cleo"}, {"id": 2, "age": 2, "name": "Pancakes"}]
This command accepts the same output options as query
- so you can pass --nl
, --csv
, --tsv
, --no-headers
, --table
and --fmt
.
You can use the -c
option to specify a subset of columns to return:
$ sqlite-utils rows dogs.db dogs -c age -c name [{"age": 4, "name": "Cleo"}, {"age": 2, "name": "Pancakes"}]
You can filter rows using a where clause with the --where
option:
$ sqlite-utils rows dogs.db dogs -c name --where 'name = "Cleo"' [{"name": "Cleo"}]
Or pass named parameters using --where
in combination with -p
:
$ sqlite-utils rows dogs.db dogs -c name --where 'name = :name' -p name Cleo [{"name": "Cleo"}]
You can define a sort order using --order column
or --order 'column desc'
.
Use --limit N
to only return the first N
rows. Use --offset N
to return rows starting from the specified offset.
Note
In Python: :ref:`table.rows <python_api_rows>` CLI reference: :ref:`sqlite-utils rows <cli_ref_rows>`
You can list the names of tables in a database using the tables
command:
$ sqlite-utils tables mydb.db [{"table": "dogs"}, {"table": "cats"}, {"table": "chickens"}]
You can output this list in CSV using the --csv
or --tsv
options:
$ sqlite-utils tables mydb.db --csv --no-headers dogs cats chickens
If you just want to see the FTS4 tables, you can use --fts4
(or --fts5
for FTS5 tables):
$ sqlite-utils tables docs.db --fts4 [{"table": "docs_fts"}]
Use --counts
to include a count of the number of rows in each table:
$ sqlite-utils tables mydb.db --counts [{"table": "dogs", "count": 12}, {"table": "cats", "count": 332}, {"table": "chickens", "count": 9}]
Use --columns
to include a list of columns in each table:
$ sqlite-utils tables dogs.db --counts --columns [{"table": "Gosh", "count": 0, "columns": ["c1", "c2", "c3"]}, {"table": "Gosh2", "count": 0, "columns": ["c1", "c2", "c3"]}, {"table": "dogs", "count": 2, "columns": ["id", "age", "name"]}]
Use --schema
to include the schema of each table:
$ sqlite-utils tables dogs.db --schema --table table schema ------- ----------------------------------------------- Gosh CREATE TABLE Gosh (c1 text, c2 text, c3 text) Gosh2 CREATE TABLE Gosh2 (c1 text, c2 text, c3 text) dogs CREATE TABLE [dogs] ( [id] INTEGER, [age] INTEGER, [name] TEXT)
The --nl
, --csv
, --tsv
, --table
and --fmt
options are also available.
Note
In Python: :ref:`db.tables or db.table_names() <python_api_tables>` CLI reference: :ref:`sqlite-utils tables <cli_ref_tables>`
The views
command shows any views defined in the database:
$ sqlite-utils views sf-trees.db --table --counts --columns --schema view count columns schema --------- ------- -------------------- -------------------------------------------------------------- demo_view 189144 ['qSpecies'] CREATE VIEW demo_view AS select qSpecies from Street_Tree_List hello 1 ['sqlite_version()'] CREATE VIEW hello as select sqlite_version()
It takes the same options as the tables
command:
--columns
--schema
--counts
--nl
--csv
--tsv
--table
Note
In Python: :ref:`db.views or db.view_names() <python_api_views>` CLI reference: :ref:`sqlite-utils views <cli_ref_views>`
The indexes
command lists any indexes configured for the database:
$ sqlite-utils indexes covid.db --table table index_name seqno cid name desc coll key -------------------------------- ------------------------------------------------------ ------- ----- ----------------- ------ ------ ----- johns_hopkins_csse_daily_reports idx_johns_hopkins_csse_daily_reports_combined_key 0 12 combined_key 0 BINARY 1 johns_hopkins_csse_daily_reports idx_johns_hopkins_csse_daily_reports_country_or_region 0 1 country_or_region 0 BINARY 1 johns_hopkins_csse_daily_reports idx_johns_hopkins_csse_daily_reports_province_or_state 0 2 province_or_state 0 BINARY 1 johns_hopkins_csse_daily_reports idx_johns_hopkins_csse_daily_reports_day 0 0 day 0 BINARY 1 ny_times_us_counties idx_ny_times_us_counties_date 0 0 date 1 BINARY 1 ny_times_us_counties idx_ny_times_us_counties_fips 0 3 fips 0 BINARY 1 ny_times_us_counties idx_ny_times_us_counties_county 0 1 county 0 BINARY 1 ny_times_us_counties idx_ny_times_us_counties_state 0 2 state 0 BINARY 1
It shows indexes across all tables. To see indexes for specific tables, list those after the database:
$ sqlite-utils indexes covid.db johns_hopkins_csse_daily_reports --table
The command defaults to only showing the columns that are explicitly part of the index. To also include auxiliary columns use the --aux
option - these columns will be listed with a key
of 0
.
The command takes the same format options as the tables
and views
commands.
Note
In Python: :ref:`table.indexes <python_api_introspection_indexes>` CLI reference: :ref:`sqlite-utils indexes <cli_ref_indexes>`
The triggers
command shows any triggers configured for the database:
$ sqlite-utils triggers global-power-plants.db --table name table sql --------------- --------- ----------------------------------------------------------------- plants_insert plants CREATE TRIGGER [plants_insert] AFTER INSERT ON [plants] BEGIN INSERT OR REPLACE INTO [_counts] VALUES ( 'plants', COALESCE( (SELECT count FROM [_counts] WHERE [table] = 'plants'), 0 ) + 1 ); END
It defaults to showing triggers for all tables. To see triggers for one or more specific tables pass their names as arguments:
$ sqlite-utils triggers global-power-plants.db plants
The command takes the same format options as the tables
and views
commands.
Note
In Python: :ref:`table.triggers or db.triggers <python_api_introspection_triggers>` CLI reference: :ref:`sqlite-utils triggers <cli_ref_triggers>`
The sqlite-utils schema
command shows the full SQL schema for the database:
$ sqlite-utils schema dogs.db CREATE TABLE "dogs" ( [id] INTEGER PRIMARY KEY, [name] TEXT );
This will show the schema for every table and index in the database. To view the schema just for a specified subset of tables pass those as additional arguments:
$ sqlite-utils schema dogs.db dogs chickens ...
Note
In Python: :ref:`table.schema <python_api_introspection_schema>` or :ref:`db.schema <python_api_schema>` CLI reference: :ref:`sqlite-utils schema <cli_ref_schema>`
When working with a new database it can be useful to get an idea of the shape of the data. The sqlite-utils analyze-tables
command inspects specified tables (or all tables) and calculates some useful details about each of the columns in those tables.
To inspect the tags
table in the github.db
database, run the following:
$ sqlite-utils analyze-tables github.db tags tags.repo: (1/3) Total rows: 261 Null rows: 0 Blank rows: 0 Distinct values: 14 Most common: 88: 107914493 75: 140912432 27: 206156866 Least common: 1: 209590345 2: 206649770 2: 303218369 tags.name: (2/3) Total rows: 261 Null rows: 0 Blank rows: 0 Distinct values: 175 Most common: 10: 0.2 9: 0.1 7: 0.3 Least common: 1: 0.1.1 1: 0.11.1 1: 0.1a2 tags.sha: (3/3) Total rows: 261 Null rows: 0 Blank rows: 0 Distinct values: 261
For each column this tool displays the number of null rows, the number of blank rows (rows that contain an empty string), the number of distinct values and, for columns that are not entirely distinct, the most common and least common values.
If you do not specify any tables every table in the database will be analyzed:
$ sqlite-utils analyze-tables github.db
If you wish to analyze one or more specific columns, use the -c
option:
$ sqlite-utils analyze-tables github.db tags -c sha
analyze-tables
can take quite a while to run for large database files. You can save the results of the analysis to a database table called _analyze_tables_
using the --save
option:
$ sqlite-utils analyze-tables github.db --save
The _analyze_tables_
table has the following schema:
CREATE TABLE [_analyze_tables_] ( [table] TEXT, [column] TEXT, [total_rows] INTEGER, [num_null] INTEGER, [num_blank] INTEGER, [num_distinct] INTEGER, [most_common] TEXT, [least_common] TEXT, PRIMARY KEY ([table], [column]) );
The most_common
and least_common
columns will contain nested JSON arrays of the most common and least common values that look like this:
[ ["Del Libertador, Av", 5068], ["Alberdi Juan Bautista Av.", 4612], ["Directorio Av.", 4552], ["Rivadavia, Av", 4532], ["Yerbal", 4512], ["Cosquín", 4472], ["Estado Plurinacional de Bolivia", 4440], ["Gordillo Timoteo", 4424], ["Montiel", 4360], ["Condarco", 4288] ]
You can create a new empty database file using the create-database
command:
$ sqlite-utils create-database empty.db
To enable :ref:`cli_wal` on the newly created database add the --enable-wal
option:
$ sqlite-utils create-database empty.db --enable-wal
To enable SpatiaLite metadata on a newly created database, add the --init-spatialite
flag:
$ sqlite-utils create-database empty.db --init-spatialite
That will look for SpatiaLite in a set of predictable locations. To load it from somewhere else, use the --load-extension
option:
$ sqlite-utils create-database empty.db --init-spatialite --load-extension /path/to/spatialite.so
If you have data as JSON, you can use sqlite-utils insert tablename
to insert it into a database. The table will be created with the correct (automatically detected) columns if it does not already exist.
You can pass in a single JSON object or a list of JSON objects, either as a filename or piped directly to standard-in (by using -
as the filename).
Here's the simplest possible example:
$ echo '{"name": "Cleo", "age": 4}' | sqlite-utils insert dogs.db dogs -
To specify a column as the primary key, use --pk=column_name
.
To create a compound primary key across more than one column, use --pk
multiple times.
If you feed it a JSON list it will insert multiple records. For example, if dogs.json
looks like this:
[ { "id": 1, "name": "Cleo", "age": 4 }, { "id": 2, "name": "Pancakes", "age": 2 }, { "id": 3, "name": "Toby", "age": 6 } ]
You can import all three records into an automatically created dogs
table and set the id
column as the primary key like so:
$ sqlite-utils insert dogs.db dogs dogs.json --pk=id
You can skip inserting any records that have a primary key that already exists using --ignore
:
$ sqlite-utils insert dogs.db dogs dogs.json --ignore
You can delete all the existing rows in the table before inserting the new records using --truncate
:
$ sqlite-utils insert dogs.db dogs dogs.json --truncate
You can add the --analyze
option to run ANALYZE
against the table after the rows have been inserted.
You can insert binary data into a BLOB column by first encoding it using base64 and then structuring it like this:
[ { "name": "transparent.gif", "content": { "$base64": true, "encoded": "R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7" } } ]
You can also import newline-delimited JSON using the --nl
option:
$ echo '{"id": 1, "name": "Cleo"} {"id": 2, "name": "Suna"}' | sqlite-utils insert creatures.db creatures - --nl
Newline-delimited JSON consists of full JSON objects separated by newlines.
If you are processing data using jq
you can use the jq -c
option to output valid newline-delimited JSON.
Since Datasette can export newline-delimited JSON, you can combine the Datasette and sqlite-utils
like so:
$ curl -L "https://latest.datasette.io/fixtures/facetable.json?_shape=array&_nl=on" \ | sqlite-utils insert nl-demo.db facetable - --pk=id --nl
You can also pipe sqlite-utils
together to create a new SQLite database file containing the results of a SQL query against another database:
$ sqlite-utils sf-trees.db \ "select TreeID, qAddress, Latitude, Longitude from Street_Tree_List" --nl \ | sqlite-utils insert saved.db trees - --nl # This creates saved.db with a single table called trees: $ sqlite-utils saved.db "select * from trees limit 5" --csv TreeID,qAddress,Latitude,Longitude 141565,501X Baker St,37.7759676911831,-122.441396661871 232565,940 Elizabeth St,37.7517102172731,-122.441498017841 119263,495X Lakeshore Dr,, 207368,920 Kirkham St,37.760210314285,-122.47073935813 188702,1501 Evans Ave,37.7422086702947,-122.387293152263
sqlite-utils insert
and sqlite-utils memory
both expect incoming JSON data to consist of an array of JSON objects, where the top-level keys of each object will become columns in the created database table.
If your data is nested you can use the --flatten
option to create columns that are derived from the nested data.
Consider this example document, in a file called log.json
:
{ "httpRequest": { "latency": "0.112114537s", "requestMethod": "GET", "requestSize": "534", "status": 200 }, "insertId": "6111722f000b5b4c4d4071e2", "labels": { "service": "datasette-io" } }
Inserting this into a table using sqlite-utils insert logs.db logs log.json
will create a table with the following schema:
CREATE TABLE [logs] ( [httpRequest] TEXT, [insertId] TEXT, [labels] TEXT );
With the --flatten
option columns will be created using topkey_nextkey
column names - so running sqlite-utils insert logs.db logs log.json --flatten
will create the following schema instead:
CREATE TABLE [logs] ( [httpRequest_latency] TEXT, [httpRequest_requestMethod] TEXT, [httpRequest_requestSize] TEXT, [httpRequest_status] INTEGER, [insertId] TEXT, [labels_service] TEXT );
If your data is in CSV format, you can insert it using the --csv
option:
$ sqlite-utils insert dogs.db dogs dogs.csv --csv
For tab-delimited data, use --tsv
:
$ sqlite-utils insert dogs.db dogs dogs.tsv --tsv
Data is expected to be encoded as Unicode UTF-8. If your data is an another character encoding you can specify it using the --encoding
option:
$ sqlite-utils insert dogs.db dogs dogs.tsv --tsv --encoding=latin-1
A progress bar is displayed when inserting data from a file. You can hide the progress bar using the --silent
option.
By default every column inserted from a CSV or TSV file will be of type TEXT
. To automatically detect column types - resulting in a mix of TEXT
, INTEGER
and FLOAT
columns, use the --detect-types
option (or its shortcut -d
).
For example, given a creatures.csv
file containing this:
name,age,weight Cleo,6,45.5 Dori,1,3.5
The following command:
$ sqlite-utils insert creatures.db creatures creatures.csv --csv --detect-types
Will produce this schema:
$ sqlite-utils schema creatures.db CREATE TABLE "creatures" ( [name] TEXT, [age] INTEGER, [weight] FLOAT );
You can set the SQLITE_UTILS_DETECT_TYPES
environment variable if you want --detect-types
to be the default behavior:
$ export SQLITE_UTILS_DETECT_TYPES=1
If your file uses a delimiter other than ,
or a quote character other than "
you can attempt to detect delimiters or you can specify them explicitly.
The --sniff
option can be used to attempt to detect the delimiters:
sqlite-utils insert dogs.db dogs dogs.csv --sniff
Alternatively, you can specify them using the --delimiter
and --quotechar
options.
Here's a CSV file that uses ;
for delimiters and the |
symbol for quote characters:
name;description Cleo;|Very fine; a friendly dog| Pancakes;A local corgi
You can import that using:
$ sqlite-utils insert dogs.db dogs dogs.csv --delimiter=";" --quotechar="|"
Passing --delimiter
, --quotechar
or --sniff
implies --csv
, so you can omit the --csv
option.
The first row of any CSV or TSV file is expected to contain the names of the columns in that file.
If your file does not include this row, you can use the --no-headers
option to specify that the tool should not use that fist row as headers.
If you do this, the table will be created with column names called untitled_1
and untitled_2
and so on. You can then rename them using the sqlite-utils transform ... --rename
command, see :ref:`cli_transform_table`.
If you have an unstructured file you can insert its contents into a table with a single line
column containing each line from the file using --lines
. This can be useful if you intend to further analyze those lines using SQL string functions or :ref:`sqlite-utils convert <cli_convert>`:
$ sqlite-utils insert logs.db loglines logfile.log --lines
This will produce the following schema:
CREATE TABLE [loglines] (
[line] TEXT
);
You can also insert the entire contents of the file into a single column called text
using --text
:
$ sqlite-utils insert content.db content file.txt --text
The schema here will be:
CREATE TABLE [content] (
[text] TEXT
);
The --convert
option can be used to apply a Python conversion function to imported data before it is inserted into the database. It works in a similar way to :ref:`sqlite-utils convert <cli_convert>`.
Your Python function will be passed a dictionary called row
for each item that is being imported. You can modify that dictionary and return it - or return a fresh dictionary - to change the data that will be inserted.
Given a JSON file called dogs.json
containing this:
[
{"id": 1, "name": "Cleo"},
{"id": 2, "name": "Pancakes"}
]
The following command will insert that data and add an is_good
column set to 1
for each dog:
$ sqlite-utils insert dogs.db dogs dogs.json --convert 'row["is_good"] = 1'
The --convert
option also works with the --csv
, --tsv
and --nl
insert options.
As with sqlite-utils convert
you can use --import
to import additional Python modules, see :ref:`cli_convert_import` for details.
You can also pass code that runs some initialization steps and defines a convert(value)
function, see :ref:`cli_convert_complex`.
Things work slightly differently when combined with the --lines
or --text
options.
With --lines
, instead of being passed a row
dictionary your function will be passed a line
string representing each line of the input. Given a file called access.log
containing the following:
INFO: 127.0.0.1:60581 - GET / HTTP/1.1 200 OK INFO: 127.0.0.1:60581 - GET /foo/-/static/app.css?cead5a HTTP/1.1 200 OK
You could convert it into structured data like so:
$ sqlite-utils insert logs.db loglines access.log --convert ' type, source, _, verb, path, _, status, _ = line.split() return { "type": type, "source": source, "verb": verb, "path": path, "status": status, }' --lines
The resulting table would look like this:
type | source | verb | path | status |
---|---|---|---|---|
INFO: | 127.0.0.1:60581 | GET | / | 200 |
INFO: | 127.0.0.1:60581 | GET | /foo/-/static/app.css?cead5a | 200 |
With --text
the entire input to the command will be made available to the function as a variable called text
.
The function can return a single dictionary which will be inserted as a single row, or it can return a list or iterator of dictionaries, each of which will be inserted.
Here's how to use --convert
and --text
to insert one record per word in the input:
$ echo 'A bunch of words' | sqlite-utils insert words.db words - \ --text --convert '({"word": w} for w in text.split())'
The result looks like this:
$ sqlite-utils dump words.db BEGIN TRANSACTION; CREATE TABLE [words] ( [word] TEXT ); INSERT INTO "words" VALUES('A'); INSERT INTO "words" VALUES('bunch'); INSERT INTO "words" VALUES('of'); INSERT INTO "words" VALUES('words'); COMMIT;
The --replace
option to insert
causes any existing records with the same primary key to be replaced entirely by the new records.
To replace a dog with in ID of 2 with a new record, run the following:
$ echo '{"id": 2, "name": "Pancakes", "age": 3}' | \ sqlite-utils insert dogs.db dogs - --pk=id --replace
Upserting is update-or-insert. If a row exists with the specified primary key the provided columns will be updated. If no row exists that row will be created.
Unlike insert --replace
, an upsert will ignore any column values that exist but are not present in the upsert document.
For example:
$ echo '{"id": 2, "age": 4}' | \ sqlite-utils upsert dogs.db dogs - --pk=id
This will update the dog with an ID of 2 to have an age of 4, creating a new record (with a null name) if one does not exist. If a row DOES exist the name will be left as-is.
The command will fail if you reference columns that do not exist on the table. To automatically create missing columns, use the --alter
option.
Note
upsert
in sqlite-utils 1.x worked like insert ... --replace
does in 2.x. See issue #66 for details of this change.
If you have a JSON, newline-delimited JSON, CSV or TSV file you can execute a bulk SQL query using each of the records in that file using the sqlite-utils bulk
command.
The command takes the database file, the SQL to be executed and the file containing records to be used when evaluating the SQL query.
The SQL query should include :named
parameters that match the keys in the records.
For example, given a chickens.csv
CSV file containing the following:
id,name 1,Blue 2,Snowy 3,Azi 4,Lila 5,Suna 6,Cardi
You could insert those rows into a pre-created chickens
table like so:
$ sqlite-utils bulk chickens.db \ 'insert into chickens (id, name) values (:id, :name)' \ chickens.csv --csv
This command takes the same options as the sqlite-utils insert
command - so it defaults to expecting JSON but can accept other formats using --csv
or --tsv
or --nl
or other options described above.
By default all of the SQL queries will be executed in a single transaction. To commit every 20 records, use --batch-size 20
.
The insert-files
command can be used to insert the content of files, along with their metadata, into a SQLite table.
Here's an example that inserts all of the GIF files in the current directory into a gifs.db
database, placing the file contents in an images
table:
$ sqlite-utils insert-files gifs.db images *.gif
You can also pass one or more directories, in which case every file in those directories will be added recursively:
$ sqlite-utils insert-files gifs.db images path/to/my-gifs
By default this command will create a table with the following schema:
CREATE TABLE [images] ( [path] TEXT PRIMARY KEY, [content] BLOB, [size] INTEGER );
Content will be treated as binary by default and stored in a BLOB
column. You can use the --text
option to store that content in a TEXT
column instead.
You can customize the schema using one or more -c
options. For a table schema that includes just the path, MD5 hash and last modification time of the file, you would use this:
$ sqlite-utils insert-files gifs.db images *.gif -c path -c md5 -c mtime --pk=path
This will result in the following schema:
CREATE TABLE [images] ( [path] TEXT PRIMARY KEY, [md5] TEXT, [mtime] FLOAT );
Note that there's no content
column here at all - if you specify custom columns using -c
you need to include -c content
to create that column.
You can change the name of one of these columns using a -c colname:coldef
parameter. To rename the mtime
column to last_modified
you would use this:
$ sqlite-utils insert-files gifs.db images *.gif \ -c path -c md5 -c last_modified:mtime --pk=path
You can pass --replace
or --upsert
to indicate what should happen if you try to insert a file with an existing primary key. Pass --alter
to cause any missing columns to be added to the table.
The full list of column definitions you can use is as follows:
name
- The name of the file, e.g.
cleo.jpg
path
- The path to the file relative to the root folder, e.g.
pictures/cleo.jpg
fullpath
- The fully resolved path to the image, e.g.
/home/simonw/pictures/cleo.jpg
sha256
- The SHA256 hash of the file contents
md5
- The MD5 hash of the file contents
mode
- The permission bits of the file, as an integer - you may want to convert this to octal
content
- The binary file contents, which will be stored as a BLOB
content_text
- The text file contents, which will be stored as TEXT
mtime
- The modification time of the file, as floating point seconds since the Unix epoch
ctime
- The creation time of the file, as floating point seconds since the Unix epoch
mtime_int
- The modification time as an integer rather than a float
ctime_int
- The creation time as an integer rather than a float
mtime_iso
- The modification time as an ISO timestamp, e.g.
2020-07-27T04:24:06.654246
ctime_iso
- The creation time is an ISO timestamp
size
- The integer size of the file in bytes
stem
- The filename without the extension - for
file.txt.gz
this would befile.txt
suffix
- The file extension - for
file.txt.gz
this would be.gz
You can insert data piped from standard input like this:
cat dog.jpg | sqlite-utils insert-files dogs.db pics - --name=dog.jpg
The -
argument indicates data should be read from standard input. The string passed using the --name
option will be used for the file name and path values.
When inserting data from standard input only the following column definitions are supported: name
, path
, content
, content_text
, sha256
, md5
and size
.
The convert
command can be used to transform the data in a specified column - for example to parse a date string into an ISO timestamp, or to split a string of tags into a JSON array.
The command accepts a database, table, one or more columns and a string of Python code to be executed against the values from those columns. The following example would replace the values in the headline
column in the articles
table with an upper-case version:
$ sqlite-utils convert content.db articles headline 'value.upper()'
The Python code is passed as a string. Within that Python code the value
variable will be the value of the current column.
The code you provide will be compiled into a function that takes value
as a single argument. If you break your function body into multiple lines the last line should be a return
statement:
$ sqlite-utils convert content.db articles headline ' value = str(value) return value.upper()'
Your code will be automatically wrapped in a function, but you can also define a function called convert(value)
which will be called, if available:
$ sqlite-utils convert content.db articles headline ' def convert(value): return value.upper()'
Use a CODE
value of -
to read from standard input:
$ cat mycode.py | sqlite-utils convert content.db articles headline -
Where mycode.py
contains a fragment of Python code that looks like this:
def convert(value):
return value.upper()
The conversion will be applied to every row in the specified table. You can limit that to just rows that match a WHERE
clause using --where
:
$ sqlite-utils convert content.db articles headline 'value.upper()' \ --where "headline like '%cat%'"
You can include named parameters in your where clause and populate them using one or more --param
options:
$ sqlite-utils convert content.db articles headline 'value.upper()' \ --where "headline like :query" \ --param query '%cat%'
The --dry-run
option will output a preview of the conversion against the first ten rows, without modifying the database.
You can specify Python modules that should be imported and made available to your code using one or more --import
options. This example uses the textwrap
module to wrap the content
column at 100 characters:
$ sqlite-utils convert content.db articles content \ '"\n".join(textwrap.wrap(value, 100))' \ --import=textwrap
This supports nested imports as well, for example to use ElementTree:
$ sqlite-utils convert content.db articles content \ 'xml.etree.ElementTree.fromstring(value).attrib["title"]' \ --import=xml.etree.ElementTree
In some cases you may need to execute one-off initialization code at the start of the run. You can do that by providing code that runs before defining your convert(value)
function.
The following example adds a new score
column, then updates it to list a random number - after first seeding the random number generator to ensure that multiple runs produce the same results:
$ sqlite-utils add-column content.db articles score float --not-null-default 1.0 $ sqlite-utils convert content.db articles score ' import random random.seed(10) def convert(value): return random.random() '
Various built-in recipe functions are available for common operations. These are:
r.jsonsplit(value, delimiter=',', type=<class 'str'>)
Convert a string like
a,b,c
into a JSON array["a", "b", "c"]
The
delimiter
parameter can be used to specify a different delimiter.The
type
parameter can be set tofloat
orint
to produce a JSON array of different types, for example if the column's string value was1.2,3,4.5
the following:r.jsonsplit(value, type=float)
Would produce an array like this:
[1.2, 3.0, 4.5]
r.parsedate(value, dayfirst=False, yearfirst=False, errors=None)
Parse a date and convert it to ISO date format:
yyyy-mm-dd
In the case of dates such as
03/04/05
U.S.MM/DD/YY
format is assumed - you can usedayfirst=True
oryearfirst=True
to change how these ambiguous dates are interpreted.Use the
errors=
parameter to specify what should happen if a value cannot be parsed.By default, if any value cannot be parsed an error will be occurred and all values will be left as they were.
Set
errors=r.IGNORE
to ignore any values that cannot be parsed, leaving them unchanged.Set
errors=r.SET_NULL
to set any values that cannot be parsed tonull
.r.parsedatetime(value, dayfirst=False, yearfirst=False, errors=None)
- Parse a datetime and convert it to ISO datetime format:
yyyy-mm-ddTHH:MM:SS
These recipes can be used in the code passed to sqlite-utils convert
like this:
$ sqlite-utils convert my.db mytable mycolumn \ 'r.jsonsplit(value)'
To use any of the documented parameters, do this:
$ sqlite-utils convert my.db mytable mycolumn \ 'r.jsonsplit(value, delimiter=":")'
The --output
and --output-type
options can be used to save the result of the conversion to a separate column, which will be created if that column does not already exist:
$ sqlite-utils convert content.db articles headline 'value.upper()' \ --output headline_upper
The type of the created column defaults to text
, but a different column type can be specified using --output-type
. This example will create a new floating point column called id_as_a_float
with a copy of each item's ID increased by 0.5:
$ sqlite-utils convert content.db articles id 'float(value) + 0.5' \ --output id_as_a_float \ --output-type float
You can drop the original column at the end of the operation by adding --drop
.
Sometimes you may wish to convert a single column into multiple derived columns. For example, you may have a location
column containing latitude,longitude
values which you wish to split out into separate latitude
and longitude
columns.
You can achieve this using the --multi
option to sqlite-utils convert
. This option expects your Python code to return a Python dictionary: new columns well be created and populated for each of the keys in that dictionary.
For the latitude,longitude
example you would use the following:
$ sqlite-utils convert demo.db places location \ 'bits = value.split(",") return { "latitude": float(bits[0]), "longitude": float(bits[1]), }' --multi
The type of the returned values will be taken into account when creating the new columns. In this example, the resulting database schema will look like this:
CREATE TABLE [places] (
[location] TEXT,
[latitude] FLOAT,
[longitude] FLOAT
);
The code function can also return None
, in which case its output will be ignored. You can drop the original column at the end of the operation by adding --drop
.
Most of the time creating tables by inserting example data is the quickest approach. If you need to create an empty table in advance of inserting data you can do so using the create-table
command:
$ sqlite-utils create-table mydb.db mytable id integer name text --pk=id
This will create a table called mytable
with two columns - an integer id
column and a text name
column. It will set the id
column to be the primary key.
You can pass as many column-name column-type pairs as you like. Valid types are integer
, text
, float
and blob
.
You can specify columns that should be NOT NULL using --not-null colname
. You can specify default values for columns using --default colname defaultvalue
.
$ sqlite-utils create-table mydb.db mytable \ id integer \ name text \ age integer \ is_good integer \ --not-null name \ --not-null age \ --default is_good 1 \ --pk=id $ sqlite-utils tables mydb.db --schema -t table schema ------- -------------------------------- mytable CREATE TABLE [mytable] ( [id] INTEGER PRIMARY KEY, [name] TEXT NOT NULL, [age] INTEGER NOT NULL, [is_good] INTEGER DEFAULT '1' )
You can specify foreign key relationships between the tables you are creating using --fk colname othertable othercolumn
:
$ sqlite-utils create-table books.db authors \ id integer \ name text \ --pk=id $ sqlite-utils create-table books.db books \ id integer \ title text \ author_id integer \ --pk=id \ --fk author_id authors id $ sqlite-utils tables books.db --schema -t table schema ------- ------------------------------------------------- authors CREATE TABLE [authors] ( [id] INTEGER PRIMARY KEY, [name] TEXT ) books CREATE TABLE [books] ( [id] INTEGER PRIMARY KEY, [title] TEXT, [author_id] INTEGER REFERENCES [authors]([id]) )
If a table with the same name already exists, you will get an error. You can choose to silently ignore this error with --ignore
, or you can replace the existing table with a new, empty table using --replace
.
You can also pass --transform
to transform the existing table to match the new schema. See :ref:`python_api_explicit_create` in the Python library documentation for details of how this option works.
The duplicate
command duplicates a table - creating a new table with the same schema and a copy of all of the rows:
$ sqlite-utils duplicate books.db authors authors_copy
You can drop a table using the drop-table
command:
$ sqlite-utils drop-table mydb.db mytable
Use --ignore
to ignore the error if the table does not exist.
The transform
command allows you to apply complex transformations to a table that cannot be implemented using a regular SQLite ALTER TABLE
command. See :ref:`python_api_transform` for details of how this works.
$ sqlite-utils transform mydb.db mytable \ --drop column1 \ --rename column2 column_renamed
Every option for this table (with the exception of --pk-none
) can be specified multiple times. The options are as follows:
--type column-name new-type
- Change the type of the specified column. Valid types are
integer
,text
,float
,blob
. --drop column-name
- Drop the specified column.
--rename column-name new-name
- Rename this column to a new name.
--column-order column
- Use this multiple times to specify a new order for your columns.
-o
shortcut is also available. --not-null column-name
- Set this column as
NOT NULL
. --not-null-false column-name
- For a column that is currently set as
NOT NULL
, remove theNOT NULL
. --pk column-name
- Change the primary key column for this table. Pass
--pk
multiple times if you want to create a compound primary key. --pk-none
- Remove the primary key from this table, turning it into a
rowid
table. --default column-name value
- Set the default value of this column.
--default-none column
- Remove the default value for this column.
--drop-foreign-key column
- Drop the specified foreign key.
If you want to see the SQL that will be executed to make the change without actually executing it, add the --sql
flag. For example:
$ sqlite-utils transform fixtures.db roadside_attractions \ --rename pk id \ --default name Untitled \ --column-order id \ --column-order longitude \ --column-order latitude \ --drop address \ --sql CREATE TABLE [roadside_attractions_new_4033a60276b9] ( [id] INTEGER PRIMARY KEY, [longitude] FLOAT, [latitude] FLOAT, [name] TEXT DEFAULT 'Untitled' ); INSERT INTO [roadside_attractions_new_4033a60276b9] ([longitude], [latitude], [id], [name]) SELECT [longitude], [latitude], [pk], [name] FROM [roadside_attractions]; DROP TABLE [roadside_attractions]; ALTER TABLE [roadside_attractions_new_4033a60276b9] RENAME TO [roadside_attractions];
SQLite tables that are created without an explicit primary key are created as rowid tables. They still have a numeric primary key which is available in the rowid
column, but that column is not included in the output of select *
. Here's an example:
% echo '[{"name": "Azi"}, {"name": "Suna"}]' | \ sqlite-utils insert chickens.db chickens - % sqlite-utils schema chickens.db CREATE TABLE [chickens] ( [name] TEXT ); % sqlite-utils chickens.db 'select * from chickens' [{"name": "Azi"}, {"name": "Suna"}] % sqlite-utils chickens.db 'select rowid, * from chickens' [{"rowid": 1, "name": "Azi"}, {"rowid": 2, "name": "Suna"}]
You can use sqlite-utils transform ... --pk id
to add a primary key column called id
to the table. The primary key will be created as an INTEGER PRIMARY KEY
and the existing rowid
values will be copied across to it. It will automatically increment as new rows are added to the table:
% sqlite-utils transform chickens.db chickens --pk id % sqlite-utils schema chickens.db CREATE TABLE "chickens" ( [id] INTEGER PRIMARY KEY, [name] TEXT ); % sqlite-utils chickens.db 'select * from chickens' [{"id": 1, "name": "Azi"}, {"id": 2, "name": "Suna"}] % echo '{"name": "Cardi"}' | sqlite-utils insert chickens.db chickens - % sqlite-utils chickens.db 'select * from chickens' [{"id": 1, "name": "Azi"}, {"id": 2, "name": "Suna"}, {"id": 3, "name": "Cardi"}]
The sqlite-utils extract
command can be used to extract specified columns into a separate table.
Take a look at the Python API documentation for :ref:`python_api_extract` for a detailed description of how this works, including examples of table schemas before and after running an extraction operation.
The command takes a database, table and one or more columns that should be extracted. To extract the species
column from the trees
table you would run:
$ sqlite-utils extract my.db trees species
This would produce the following schema:
CREATE TABLE "trees" (
[id] INTEGER PRIMARY KEY,
[TreeAddress] TEXT,
[species_id] INTEGER,
FOREIGN KEY(species_id) REFERENCES species(id)
);
CREATE TABLE [species] (
[id] INTEGER PRIMARY KEY,
[species] TEXT
);
CREATE UNIQUE INDEX [idx_species_species]
ON [species] ([species]);
The command takes the following options:
--table TEXT
- The name of the lookup to extract columns to. This defaults to using the name of the columns that are being extracted.
--fk-column TEXT
- The name of the foreign key column to add to the table. Defaults to
columnname_id
. --rename <TEXT TEXT>
- Use this option to rename the columns created in the new lookup table.
--silent
- Don't display the progress bar.
Here's a more complex example that makes use of these options. It converts this CSV file full of global power plants into SQLite, then extracts the country
and country_long
columns into a separate countries
table:
wget 'https://github.com/wri/global-power-plant-database/blob/232a6666/output_database/global_power_plant_database.csv?raw=true' sqlite-utils insert global.db power_plants \ 'global_power_plant_database.csv?raw=true' --csv # Extract those columns: sqlite-utils extract global.db power_plants country country_long \ --table countries \ --fk-column country_id \ --rename country_long name
After running the above, the command sqlite-utils schema global.db
reveals the following schema:
CREATE TABLE [countries] (
[id] INTEGER PRIMARY KEY,
[country] TEXT,
[name] TEXT
);
CREATE TABLE "power_plants" (
[country_id] INTEGER,
[name] TEXT,
[gppd_idnr] TEXT,
[capacity_mw] TEXT,
[latitude] TEXT,
[longitude] TEXT,
[primary_fuel] TEXT,
[other_fuel1] TEXT,
[other_fuel2] TEXT,
[other_fuel3] TEXT,
[commissioning_year] TEXT,
[owner] TEXT,
[source] TEXT,
[url] TEXT,
[geolocation_source] TEXT,
[wepp_id] TEXT,
[year_of_capacity_data] TEXT,
[generation_gwh_2013] TEXT,
[generation_gwh_2014] TEXT,
[generation_gwh_2015] TEXT,
[generation_gwh_2016] TEXT,
[generation_gwh_2017] TEXT,
[generation_data_source] TEXT,
[estimated_generation_gwh] TEXT,
FOREIGN KEY([country_id]) REFERENCES [countries]([id])
);
CREATE UNIQUE INDEX [idx_countries_country_name]
ON [countries] ([country], [name]);
You can create a view using the create-view
command:
$ sqlite-utils create-view mydb.db version "select sqlite_version()" $ sqlite-utils mydb.db "select * from version" [{"sqlite_version()": "3.31.1"}]
Use --replace
to replace an existing view of the same name, and --ignore
to do nothing if a view already exists.
You can drop a view using the drop-view
command:
$ sqlite-utils drop-view myview
Use --ignore
to ignore the error if the view does not exist.
You can add a column using the add-column
command:
$ sqlite-utils add-column mydb.db mytable nameofcolumn text
The last argument here is the type of the column to be created. You can use one of text
, integer
, float
or blob
. If you leave it off, text
will be used.
You can add a column that is a foreign key reference to another table using the --fk
option:
$ sqlite-utils add-column mydb.db dogs species_id --fk species
This will automatically detect the name of the primary key on the species table and use that (and its type) for the new column.
You can explicitly specify the column you wish to reference using --fk-col
:
$ sqlite-utils add-column mydb.db dogs species_id --fk species --fk-col ref
You can set a NOT NULL DEFAULT 'x'
constraint on the new column using --not-null-default
:
$ sqlite-utils add-column mydb.db dogs friends_count integer --not-null-default 0
You can use the --alter
option to automatically add new columns if the data you are inserting or upserting is of a different shape:
$ sqlite-utils insert dogs.db dogs new-dogs.json --pk=id --alter
The add-foreign-key
command can be used to add new foreign key references to an existing table - something which SQLite's ALTER TABLE
command does not support.
To add a foreign key constraint pointing the books.author_id
column to authors.id
in another table, do this:
$ sqlite-utils add-foreign-key books.db books author_id authors id
If you omit the other table and other column references sqlite-utils
will attempt to guess them - so the above example could instead look like this:
$ sqlite-utils add-foreign-key books.db books author_id
Add --ignore
to ignore an existing foreign key (as opposed to returning an error):
$ sqlite-utils add-foreign-key books.db books author_id --ignore
See :ref:`python_api_add_foreign_key` in the Python API documentation for further details, including how the automatic table guessing mechanism works.
Adding a foreign key requires a VACUUM
. On large databases this can be an expensive operation, so if you are adding multiple foreign keys you can combine them into one operation (and hence one VACUUM
) using add-foreign-keys
:
$ sqlite-utils add-foreign-keys books.db \ books author_id authors id \ authors country_id countries id
When you are using this command each foreign key needs to be defined in full, as four arguments - the table, column, other table and other column.
If you want to ensure that every foreign key column in your database has a corresponding index, you can do so like this:
$ sqlite-utils index-foreign-keys books.db
You can use the --not-null
and --default
options (to both insert
and upsert
) to specify columns that should be NOT NULL
or to set database defaults for one or more specific columns:
$ sqlite-utils insert dogs.db dogs_with_scores dogs-with-scores.json \ --not-null=age \ --not-null=name \ --default age 2 \ --default score 5
You can add an index to an existing table using the create-index
command:
$ sqlite-utils create-index mydb.db mytable col1 [col2...]
This can be used to create indexes against a single column or multiple columns.
The name of the index will be automatically derived from the table and columns. To specify a different name, use --name=name_of_index
.
Use the --unique
option to create a unique index.
Use --if-not-exists
to avoid attempting to create the index if one with that name already exists.
To add an index on a column in descending order, prefix the column with a hyphen. Since this can be confused for a command-line option you need to construct that like this:
$ sqlite-utils create-index mydb.db mytable -- col1 -col2 col3
This will create an index on that table on (col1, col2 desc, col3)
.
If your column names are already prefixed with a hyphen you'll need to manually execute a CREATE INDEX
SQL statement to add indexes to them rather than using this tool.
Add the --analyze
option to run ANALYZE
against the index after it has been created.
You can enable SQLite full-text search on a table and a set of columns like this:
$ sqlite-utils enable-fts mydb.db documents title summary
This will use SQLite's FTS5 module by default. Use --fts4
if you want to use FTS4:
$ sqlite-utils enable-fts mydb.db documents title summary --fts4
The enable-fts
command will populate the new index with all existing documents. If you later add more documents you will need to use populate-fts
to cause them to be indexed as well:
$ sqlite-utils populate-fts mydb.db documents title summary
A better solution here is to use database triggers. You can set up database triggers to automatically update the full-text index using the --create-triggers
option when you first run enable-fts
:
$ sqlite-utils enable-fts mydb.db documents title summary --create-triggers
To set a custom FTS tokenizer, e.g. to enable Porter stemming, use --tokenize=
:
$ sqlite-utils populate-fts mydb.db documents title summary --tokenize=porter
To remove the FTS tables and triggers you created, use disable-fts
:
$ sqlite-utils disable-fts mydb.db documents
To rebuild one or more FTS tables (see :ref:`python_api_fts_rebuild`), use rebuild-fts
:
$ sqlite-utils rebuild-fts mydb.db documents
You can rebuild every FTS table by running rebuild-fts
without passing any table names:
$ sqlite-utils rebuild-fts mydb.db
Once you have configured full-text search for a table, you can search it using sqlite-utils search
:
$ sqlite-utils search mydb.db documents searchterm
This command accepts the same output options as sqlite-utils query
: --table
, --csv
, --tsv
, --nl
etc.
By default it shows the most relevant matches first. You can specify a different sort order using the -o
option, which can take a column or a column followed by desc
:
# Sort by rowid $ sqlite-utils search mydb.db documents searchterm -o rowid # Sort by created in descending order $ sqlite-utils search mydb.db documents searchterm -o 'created desc'
SQLite advanced search syntax is enabled by default. To run a search with automatic quoting applied to the terms to avoid them being potentially interpreted as advanced search syntax use the --quote
option.
You can specify a subset of columns to be returned using the -c
option one or more times:
$ sqlite-utils search mydb.db documents searchterm -c title -c created
By default all search results will be returned. You can use --limit 20
to return just the first 20 results.
Use the --sql
option to output the SQL that would be executed, rather than running the query:
$ sqlite-utils search mydb.db documents searchterm --sql with original as ( select rowid, * from [documents] ) select [original].* from [original] join [documents_fts] on [original].rowid = [documents_fts].rowid where [documents_fts] match :query order by [documents_fts].rank
select count(*)
queries can take a long time against large tables. sqlite-utils
can speed these up by adding triggers to maintain a _counts
table, see :ref:`python_api_cached_table_counts` for details.
The sqlite-utils enable-counts
command can be used to configure these triggers, either for every table in the database or for specific tables.
# Configure triggers for every table in the database $ sqlite-utils enable-counts mydb.db # Configure triggers just for specific tables $ sqlite-utils enable-counts mydb.db table1 table2
If the _counts
table ever becomes out-of-sync with the actual table counts you can repair it using the reset-counts
command:
$ sqlite-utils reset-counts mydb.db
The SQLite ANALYZE command builds a table of statistics which the query planner can use to make better decisions about which indexes to use for a given query.
You should run ANALYZE
if your database is large and you do not think your indexes are being efficiently used.
To run ANALYZE
against every index in a database, use this:
$ sqlite-utils analyze mydb.db
You can run it against specific tables, or against specific named indexes, by passing them as optional arguments:
$ sqlite-utils analyze mydb.db mytable idx_mytable_name
You can also run ANALYZE
as part of another command using the --analyze
option. This is supported by the create-index
, insert
and upsert
commands.
You can run VACUUM to optimize your database like so:
$ sqlite-utils vacuum mydb.db
The optimize command can dramatically reduce the size of your database if you are using SQLite full-text search. It runs OPTIMIZE against all of your FTS4 and FTS5 tables, then runs VACUUM.
If you just want to run OPTIMIZE without the VACUUM, use the --no-vacuum
flag.
# Optimize all FTS tables and then VACUUM $ sqlite-utils optimize mydb.db # Optimize but skip the VACUUM $ sqlite-utils optimize --no-vacuum mydb.db
To optimize specific tables rather than every FTS table, pass those tables as extra arguments:
$ sqlite-utils optimize mydb.db table_1 table_2
You can enable Write-Ahead Logging for a database file using the enable-wal
command:
$ sqlite-utils enable-wal mydb.db
You can disable WAL mode using disable-wal
:
$ sqlite-utils disable-wal mydb.db
Both of these commands accept one or more database files as arguments.
The dump
command outputs a SQL dump of the schema and full contents of the specified database file:
$ sqlite-utils dump mydb.db BEGIN TRANSACTION; CREATE TABLE ... ... COMMIT;
Many of these commands have the ability to load additional SQLite extensions using the --load-extension=/path/to/extension
option - use --help
to check for support, e.g. sqlite-utils rows --help
.
This option can be applied multiple times to load multiple extensions.
Since SpatiaLite is commonly used with SQLite, the value spatialite
is special: it will search for SpatiaLite in the most common installation locations, saving you from needing to remember exactly where that module is located:
$ sqlite-utils memory "select spatialite_version()" --load-extension=spatialite [{"spatialite_version()": "4.3.0a"}]
SpatiaLite adds geographic capability to SQLite (similar to how PostGIS builds on PostgreSQL). The SpatiaLite cookbook is a good resource for learning what's possible with it.
You can convert an existing table to a geographic table by adding a geometry column, use the sqlite-utils add-geometry-column
command:
$ sqlite-utils add-geometry-column spatial.db locations geometry --type POLYGON --srid 4326
The table (locations
in the example above) must already exist before adding a geometry column. Use sqlite-utils create-table
first, then add-geometry-column
.
Use the --type
option to specify a geometry type. By default, add-geometry-column
uses a generic GEOMETRY
, which will work with any type, though it may not be supported by some desktop GIS applications.
Eight (case-insensitive) types are allowed:
- POINT
- LINESTRING
- POLYGON
- MULTIPOINT
- MULTILINESTRING
- MULTIPOLYGON
- GEOMETRYCOLLECTION
- GEOMETRY
Once you have a geometry column, you can speed up bounding box queries by adding a spatial index:
$ sqlite-utils create-spatial-index spatial.db locations geometry
See this SpatiaLite Cookbook recipe for examples of how to use a spatial index.
The :ref:`convert command <cli_convert>` and the :ref:`insert -\\-convert <cli_insert_convert>` and :ref:`query -\\-functions <cli_query_functions>` options can be provided with a Python script that imports additional modules from the sqlite-utils
environment.
You can install packages from PyPI directly into the correct environment using sqlite-utils install <package>
. This is a wrapper around pip install
.
$ sqlite-utils install beautifulsoup4
Use -U
to upgrade an existing package.
You can uninstall packages that were installed using sqlite-utils install
with sqlite-utils uninstall <package>
:
$ sqlite-utils uninstall beautifulsoup4
Use -y
to skip the request for confirmation.